login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A339988
Prime numbers that are the sum of an odd square s and an even square t such that 0 < s < t.
0
5, 17, 37, 61, 73, 89, 101, 109, 113, 149, 181, 193, 197, 257, 277, 281, 317, 337, 349, 373, 401, 409, 449, 509, 521, 569, 577, 601, 613, 653, 677, 701, 709, 757, 761, 773, 797, 809, 937, 953, 1009, 1021, 1033, 1049, 1069, 1117, 1181, 1193, 1237, 1249, 1277, 1297, 1301
OFFSET
1,1
EXAMPLE
17 is in the sequence since it is a prime such that 1^2 + 4^2 = 1 + 16 = 17, where 1 is odd, 16 is even, and 0 < 1 < 16.
MATHEMATICA
Table[If[(PrimePi[n] - PrimePi[n - 1])*Sum[Mod[i, 2] Mod[n - i + 1, 2] (Floor[Sqrt[i]] - Floor[Sqrt[i - 1]]) (Floor[Sqrt[n - i]] - Floor[Sqrt[n - i - 1]]), {i, Floor[n/2]}] > 0, n, {}], {n, 1200}] // Flatten
osesQ[p_]:=Module[{s=Select[IntegerPartitions[p, {2}], AllTrue[Sqrt[#], IntegerQ]&]}, OddQ[ Min[s]] && EvenQ[Max[s]]]; Select[Prime[Range[250]], osesQ] (* Harvey P. Dale, Aug 02 2024 *)
CROSSREFS
Sequence in context: A119456 A264904 A257582 * A273538 A273212 A273274
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Dec 25 2020
STATUS
approved