login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A339990
Sums of two odd cubes.
3
2, 28, 54, 126, 152, 250, 344, 370, 468, 686, 730, 756, 854, 1072, 1332, 1358, 1456, 1458, 1674, 2060, 2198, 2224, 2322, 2540, 2662, 2926, 3376, 3402, 3500, 3528, 3718, 4104, 4394, 4706, 4914, 4940, 5038, 5256, 5572, 5642, 6244, 6750, 6860, 6886, 6984, 7110, 7202
OFFSET
1,1
EXAMPLE
28 is in the sequence since 1^3 + 3^3 = 1 + 27 = 28, with 1 and 27 both odd.
MATHEMATICA
Table[If[Sum[Mod[i, 2] Mod[n - i, 2] (Floor[i^(1/3)] - Floor[(i - 1)^(1/3)]) (Floor[(n - i)^(1/3)] - Floor[(n - i - 1)^(1/3)]), {i, Floor[n/2]}] > 0, n, {}], {n, 1200}] // Flatten
Union[Total/@Tuples[Range[1, 25, 2]^3, 2]] (* Harvey P. Dale, Nov 17 2024 *)
PROG
(Python)
def aupto(lim):
ocs = [k**3 for k in range(1, int(lim**(1/3)+2), 2)]
return sorted(set(c1+c2 for c1 in ocs for c2 in ocs if c1+c2 <= lim))
print(aupto(7202)) # Michael S. Branicky, Feb 28 2021
CROSSREFS
Cf. A010057.
Sequence in context: A022376 A177829 A363875 * A336464 A245801 A296245
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Dec 25 2020
STATUS
approved