login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A339987
The number of labeled graphs on 2n vertices that share the same degree sequence as any unrooted binary tree on 2n vertices.
3
1, 4, 90, 8400, 1426950, 366153480, 134292027870, 67095690261600, 43893900947947050, 36441011093916429000, 37446160423265535041100, 46669357647008722700474400, 69367722399061403579194432500, 121238024532751529573125745790000, 246171692450596203263023527657431250
OFFSET
1,2
COMMENTS
An unrooted binary tree is a tree in which all non-leaf vertices have degree 3. With 2n vertices there will be n+1 leaves and n-1 internal vertices.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..100 (terms 1..40 from Atabey Kaygun)
M. Kauers and C. Koutschan, Some D-finite and some possibly D-finite sequences in the OEIS, arXiv:2303.02793 [cs.SC], 2023.
FORMULA
Conjectured recurrence: 32*(1 + n)*(2 + n)*(1 + 2*n)*(3 + 2*n)*(5 + 2*n)*(7 + 2*n)*(9 + 2*n)*(11589 + 10844*n + 3300*n^2 + 328*n^3)*a(n) - 8*(2 + n)*(3 + 2*n)*(5 + 2*n)*(7 + 2*n)*(9 + 2*n)*(148119 + 232328*n + 129460*n^2 + 30664*n^3 + 2624*n^4)*a(n+1) - 16*(3 + n)*(5 + 2*n)*(7 + 2*n)*(9 + 2*n)*(341634 + 712135*n + 569267*n^2 + 219308*n^3 + 40852*n^4 + 2952*n^5)*a(n+2) + 8*(4 + n)*(7 + 2*n)*(9 + 2*n)*(527520 + 1057879*n + 818282*n^2 + 306380*n^3 + 55672*n^4 + 3936*n^5)*a(n+3) - 2*(5 + n)*(9 + 2*n)*(601452 + 1117119*n + 786236*n^2 + 264028*n^3 + 42472*n^4 + 2624*n^5)*a(n+4) + 3*(4 + n)*(6 + n)*(3717 + 5228*n + 2316*n^2 + 328*n^3)*a(n+5) = 0. - Manuel Kauers and Christoph Koutschan, Mar 01 2023
Conjecture: a(n) ~ 2^(5*n - 1/2) * n^(2*n - 3/2) / (sqrt(Pi) * 3^(n-1) * exp(2*n + 21/16)), based on the recurrence by Manuel Kauers and Christoph Koutschan. - Vaclav Kotesovec, Mar 07 2023
PROG
(PARI) \\ See Links in A295193 for GraphsByDegreeSeq.
a(n) = {if(n==1, 1, my(d=2*n-4, M=GraphsByDegreeSeq(n-1, 3, (p, r)-> subst(deriv(p), x, 1) >= d-6*r), z=(2*n)!/(n-1)!); sum(i=1, matsize(M)[1], my(p=M[i, 1], r=(subst(deriv(p), x, 1)-d)/2); M[i, 2]*z / (2^polcoef(p, 1) * 6^polcoef(p, 0) * 2^r * r!)))} \\ Andrew Howroyd, Mar 01 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Atabey Kaygun, Dec 25 2020
STATUS
approved