

A257579


Continued square root map applied to fifth powers: 1, 2^5, 3^5, 4^5, ...


1



2, 8, 2, 3, 4, 8, 1, 5, 1, 2, 8, 3, 4, 2, 0, 3, 3, 7, 7, 5, 7, 1, 3, 4, 4, 4, 0, 4, 5, 5, 5, 8, 4, 0, 8, 9, 6, 8, 4, 3, 8, 5, 3, 6, 4, 4, 1, 9, 8, 5, 8, 7, 3, 9, 3, 4, 7, 4, 3, 3, 0, 8, 7, 5, 1, 8, 0, 0, 7, 4, 3, 5, 6, 7, 2, 9, 3, 8, 4, 4, 0, 1, 1, 0, 4, 1, 8
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

The continued square root map applied to a sequence b(1), b(2), b(3), ... produces the decimal number sqrt(b(1)+sqrt(b(2)+sqrt(b(3)+sqrt(b(4)+...)))).


LINKS

Hiroaki Yamanouchi, Table of n, a(n) for n = 1..1000
Herman P. Robinson, The CSR Function, Popular Computing (Calabasas, CA), Vol. 4 (No. 35, Feb 1976), pages PC353 to PC354. Annotated and scanned copy.


EXAMPLE

2.8234815128342033775713444...


CROSSREFS

CF. A000584 (fifth powers).
Sequence in context: A307450 A173686 A090975 * A199715 A296049 A074962
Adjacent sequences: A257576 A257577 A257578 * A257580 A257581 A257582


KEYWORD

nonn,cons


AUTHOR

N. J. A. Sloane, May 02 2015


EXTENSIONS

a(27)a(87) from Hiroaki Yamanouchi, May 03 2015


STATUS

approved



