login
Continued square root map applied to fifth powers: 1, 2^5, 3^5, 4^5, ...
1

%I #16 Oct 31 2019 11:40:52

%S 2,8,2,3,4,8,1,5,1,2,8,3,4,2,0,3,3,7,7,5,7,1,3,4,4,4,0,4,5,5,5,8,4,0,

%T 8,9,6,8,4,3,8,5,3,6,4,4,1,9,8,5,8,7,3,9,3,4,7,4,3,3,0,8,7,5,1,8,0,0,

%U 7,4,3,5,6,7,2,9,3,8,4,4,0,1,1,0,4,1,8

%N Continued square root map applied to fifth powers: 1, 2^5, 3^5, 4^5, ...

%C The continued square root map applied to a sequence b(1), b(2), b(3), ... produces the decimal number sqrt(b(1)+sqrt(b(2)+sqrt(b(3)+sqrt(b(4)+...)))).

%H Hiroaki Yamanouchi, <a href="/A257579/b257579.txt">Table of n, a(n) for n = 1..1000</a>

%H Herman P. Robinson, <a href="/A257574/a257574.pdf">The CSR Function</a>, Popular Computing (Calabasas, CA), Vol. 4 (No. 35, Feb 1976), pages PC35-3 to PC35-4. Annotated and scanned copy.

%e 2.8234815128342033775713444...

%Y CF. A000584 (fifth powers).

%K nonn,cons

%O 1,1

%A _N. J. A. Sloane_, May 02 2015

%E a(27)-a(87) from _Hiroaki Yamanouchi_, May 03 2015