login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A119459
Decomposition of function F = x/(1-x) into functions of the form [x + a(n)*x^n]: x = ...o x+a(n)*x^n o...o x+a(3)*x^3 o x+a(2)*x^2 o a(1)*x o F.
4
1, -1, 1, 2, 6, 10, 27, 54, 253, 312, 1116, 2194, 6157, 15552, 54514, 89014, 687252, 964080, 2577597, 6822210, 22066744, 38505658, 119635413, 289026266, 517893326, 2410443144, 9800259872, 22806899334, 87955801599, 189512770532, 416815519198, 1126216162158, 9805754835374
OFFSET
1,4
EXAMPLE
Iterated decompositions of F=x/(1-x) into [x + a(n)*x^n]:
x = ... o x+6*x^5 o x+2*x^4 o x+1*x^3 o x-1*x^2 o 1*x o F.
These decompositions get closer to x at each iteration:
(1) 1*x o F = x/(1-x) = x + x^2 + x^3 + x^4 + x^5 +...
(2) x-1*x^2 o 1*x o F =
x - x^3 - 2*x^4 - 3*x^5 - 4*x^6 - 5*x^7 - 6*x^8 -...
(3) x+1*x^3 o x-1*x^2 o 1*x o F =
x - 2*x^4 - 6*x^5 - 10*x^6 - 11*x^7 - 6*x^8 + 7*x^9 +...
(4) x+2*x^4 o x+1*x^3 o x-1*x^2 o 1*x o F =
x - 6*x^5 - 10*x^6 - 27*x^7 - 54*x^8 - 73*x^9 +...
(5) x+6*x^5 o x+2*x^4 o x+1*x^3 o x-1*x^2 o 1*x o F =
x - 10*x^6 - 27*x^7 - 54*x^8 - 253*x^9 +...
PROG
(PARI) {a(n)=local(F=x/(1-x+x*O(x^n))); if(n<1, 0, if(n==1, 1, for(k=2, n, c=-polcoeff(F, k); F=subst(x+c*x^k, x, F); ); return(c)))}
CROSSREFS
Cf. A119460 (composition of x/(1-x)).
Sequence in context: A320429 A319014 A190034 * A291463 A365542 A364879
KEYWORD
sign
AUTHOR
Paul D. Hanna, May 20 2006
STATUS
approved