OFFSET
0,2
COMMENTS
Row n contains 1 + floor(n/2) terms.
Sum of entries in row n is 2^n (A000079).
2*binomial(n-1,2k) is also the number of permutations avoiding both 123 and 132 with k valleys, i.e., positions with w[i]>w[i+1]<w[i+2]. - Lara Pudwell, Dec 19 2018
LINKS
Muniru A Asiru, Rows n=0..150, flattened
M. Bukata, R. Kulwicki, N. Lewandowski, L. Pudwell, J. Roth, and T. Wheeland, Distributions of Statistics over Pattern-Avoiding Permutations, arXiv preprint arXiv:1812.07112 [math.CO], 2018.
L. Carlitz and R. Scoville, Zero-one sequences and Fibonacci numbers, Fibonacci Quarterly, 15 (1977), 246-254.
FORMULA
T(n,k) = 2*binomial(n,2k) for n >= 1; T(0,0) = 1.
T(n,k) = 2*T(n-1,k) - T(n-2,k) + T(n-2,k-1) for n >= 3.
G.f.: (1 - z^2 + t*z^2)/(1 - 2*z + z^2 - t*z^2).
T(n,0) = 2 for n >= 1.
T(n,1) = 2*binomial(n,2) = A002378(n-1).
T(n,2) = 2*binomial(n,4) = A034827(n).
T(n,k) = 2*A034839(n-1,k) for n >= 1. [Corrected by Georg Fischer, May 28 2023]
Sum_{k=0..floor(n/2)} k*T(n,k) = A057711(n).
EXAMPLE
T(3,1) = 6 because we have 001, 010, 011, 100, 101 and 110.
Triangle starts:
1;
2;
2, 2;
2, 6;
2, 12, 2;
2, 20, 10;
2, 30, 30, 2;
...
MAPLE
T:=proc(n, k) if n=0 and k=0 then 1 else 2*binomial(n, 2*k) fi end: for n from 0 to 15 do seq(T(n, k), k=0..floor(n/2)) od; # yields sequence in triangular form
PROG
(GAP) Concatenation([1], Flat(List([1..15], n->List([0..Int(n/2)], k->2*Binomial(n, 2*k))))); # Muniru A Asiru, Dec 20 2018
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, May 21 2006
STATUS
approved