login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A096625
Denominators of the Riemann prime counting function.
4
1, 1, 1, 2, 2, 2, 2, 6, 3, 3, 3, 3, 3, 3, 3, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60
OFFSET
1,4
LINKS
Eric Weisstein's World of Mathematics, Riemann Prime Counting Function
EXAMPLE
0, 1, 2, 5/2, 7/2, 7/2, 9/2, 29/6, 16/3, 16/3, 19/3, ...
MATHEMATICA
Table[Sum[PrimePi[x^(1/k)]/k, {k, Log2[x]}], {x, 100}] // Denominator (* Eric W. Weisstein, Jan 09 2019 *)
PROG
(PARI) a(n) = denominator(sum(k=1, n, if (p=isprimepower(k), 1/p))); \\ Michel Marcus, Jan 07 2019
(PARI) a(n) = denominator(sum(k=1, logint(n, 2), primepi(sqrtnint(n, k))/k)); \\ Daniel Suteu, Jan 07 2019
CROSSREFS
Cf. A096624.
Sequence in context: A119462 A293221 A334512 * A359072 A263455 A283677
KEYWORD
nonn,frac
AUTHOR
Eric W. Weisstein, Jul 01 2004
STATUS
approved