OFFSET
1,3
LINKS
Eric Weisstein's World of Mathematics, Riemann Prime Counting Function
FORMULA
(1/1)*Sa{(x^a)/(1-x)} - (1/2)*Sa{ Sb{ (x^(a*b))/(1-x)}} + (1/3)*Sa{ Sb{ Sc{ (x^(a*b*c))/(1-x)}}} - (1/4)*Sa{ Sb{ Sc{ Sd{ (x^(a*b*c*d))/(1-x)}}}} + ... . - Mats Granvik, Apr 06 2011
EXAMPLE
0, 1, 2, 5/2, 7/2, 7/2, 9/2, 29/6, 16/3, 16/3, 19/3, ...
MATHEMATICA
Table[Sum[PrimePi[x^(1/k)]/k, {k, Log2[x]}], {x, 100}] // Numerator (* Eric W. Weisstein, Jan 09 2019 *)
PROG
(PARI) a(n) = numerator(sum(k=1, n, if (p=isprimepower(k), 1/p))); \\ Michel Marcus, Jan 07 2019
(PARI) a(n) = numerator(sum(k=1, logint(n, 2), primepi(sqrtnint(n, k))/k)); \\ Daniel Suteu, Jan 07 2019
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
Eric W. Weisstein, Jul 01 2004
STATUS
approved