login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A096624
Numerators of the Riemann prime counting function.
5
0, 1, 2, 5, 7, 7, 9, 29, 16, 16, 19, 19, 22, 22, 22, 91, 103, 103, 115, 115, 115, 115, 127, 127, 133, 133, 137, 137, 149, 149, 161, 817, 817, 817, 817, 817, 877, 877, 877, 877, 937, 937, 997, 997, 997, 997, 1057, 1057, 1087, 1087, 1087, 1087, 1147, 1147, 1147
OFFSET
1,3
LINKS
Eric Weisstein's World of Mathematics, Riemann Prime Counting Function
FORMULA
Let Sk{f(k)}= Sum_{k>=2}f(k), then the g.f. of A096624/A096625 can be written as
(1/1)*Sa{(x^a)/(1-x)} - (1/2)*Sa{ Sb{ (x^(a*b))/(1-x)}} + (1/3)*Sa{ Sb{ Sc{ (x^(a*b*c))/(1-x)}}} - (1/4)*Sa{ Sb{ Sc{ Sd{ (x^(a*b*c*d))/(1-x)}}}} + ... . - Mats Granvik, Apr 06 2011
EXAMPLE
0, 1, 2, 5/2, 7/2, 7/2, 9/2, 29/6, 16/3, 16/3, 19/3, ...
MATHEMATICA
Table[Sum[PrimePi[x^(1/k)]/k, {k, Log2[x]}], {x, 100}] // Numerator (* Eric W. Weisstein, Jan 09 2019 *)
PROG
(PARI) a(n) = numerator(sum(k=1, n, if (p=isprimepower(k), 1/p))); \\ Michel Marcus, Jan 07 2019
(PARI) a(n) = numerator(sum(k=1, logint(n, 2), primepi(sqrtnint(n, k))/k)); \\ Daniel Suteu, Jan 07 2019
CROSSREFS
Cf. A096625.
Sequence in context: A131688 A226213 A199590 * A145378 A069887 A254340
KEYWORD
nonn,frac
AUTHOR
Eric W. Weisstein, Jul 01 2004
STATUS
approved