login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numerators of the Riemann prime counting function.
5

%I #24 Jan 09 2019 19:28:22

%S 0,1,2,5,7,7,9,29,16,16,19,19,22,22,22,91,103,103,115,115,115,115,127,

%T 127,133,133,137,137,149,149,161,817,817,817,817,817,877,877,877,877,

%U 937,937,997,997,997,997,1057,1057,1087,1087,1087,1087,1147,1147,1147

%N Numerators of the Riemann prime counting function.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RiemannPrimeCountingFunction.html">Riemann Prime Counting Function</a>

%F Let Sk{f(k)}= Sum_{k>=2}f(k), then the g.f. of A096624/A096625 can be written as

%F (1/1)*Sa{(x^a)/(1-x)} - (1/2)*Sa{ Sb{ (x^(a*b))/(1-x)}} + (1/3)*Sa{ Sb{ Sc{ (x^(a*b*c))/(1-x)}}} - (1/4)*Sa{ Sb{ Sc{ Sd{ (x^(a*b*c*d))/(1-x)}}}} + ... . - _Mats Granvik_, Apr 06 2011

%e 0, 1, 2, 5/2, 7/2, 7/2, 9/2, 29/6, 16/3, 16/3, 19/3, ...

%t Table[Sum[PrimePi[x^(1/k)]/k, {k, Log2[x]}], {x, 100}] // Numerator (* _Eric W. Weisstein_, Jan 09 2019 *)

%o (PARI) a(n) = numerator(sum(k=1, n, if (p=isprimepower(k), 1/p))); \\ _Michel Marcus_, Jan 07 2019

%o (PARI) a(n) = numerator(sum(k=1, logint(n, 2), primepi(sqrtnint(n, k))/k)); \\ _Daniel Suteu_, Jan 07 2019

%Y Cf. A096625.

%K nonn,frac

%O 1,3

%A _Eric W. Weisstein_, Jul 01 2004