The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A226213 Zeckendorf distance between n and 2^n. 2
 1, 1, 2, 5, 7, 7, 6, 7, 12, 14, 17, 12, 17, 22, 20, 25, 25, 28, 30, 31, 33, 31, 36, 34, 39, 39, 32, 42, 45, 42, 48, 45, 51, 51, 43, 54, 57, 55, 60, 52, 63, 63, 60, 66, 63, 70, 72, 67, 75, 70, 78, 79, 81, 82, 84, 82, 87, 83, 88, 86, 91, 94, 88, 97, 89, 100 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Zeckendorf distance is defined at A226207. LINKS Clark Kimberling, Table of n, a(n) for n = 1..1000 EXAMPLE 6 = 5 + 1 -> 3, and 2^6 = 55 + 8 + 1 -> 34 + 5 -> 21 + 3 -> 13 + 2 -> 8 + 1 -> 5 -> 3. The total number of Zeckendorf downshifts (i.e., arrows) is 7, so that a(6) = D(6,64) = 7. MATHEMATICA zeck[n_Integer] := Block[{k = Ceiling[Log[GoldenRatio, n*Sqrt[5]]], t = n, z = {}}, While[k > 1, If[t >= Fibonacci[k], AppendTo[z, 1]; t = t - Fibonacci[k], AppendTo[z, 0]]; k--]; If[n > 0 && z[[1]] == 0, Rest[z], z]]; d[n1_, n2_] := Module[{z1 = zeck[n1], z2 = zeck[n2]}, Length[z1] + Length[z2] - 2 (NestWhile[# + 1 &, 1, z1[[#]] == z2[[#]] &, 1, Min[{Length[z1], Length[z2]}]] - 1)]; lst = Map[d[#, 2^#]] &, Range[100]] (* Peter J. C. Moses, May 30 2013 *) CROSSREFS Cf. A226080, A226207. Sequence in context: A021392 A373919 A131688 * A199590 A096624 A145378 Adjacent sequences: A226210 A226211 A226212 * A226214 A226215 A226216 KEYWORD nonn,easy AUTHOR Clark Kimberling, May 31 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 18 15:51 EDT 2024. Contains 374388 sequences. (Running on oeis4.)