login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A226215
Zeckendorf distance between n! and (n+1)! .
2
1, 2, 5, 11, 18, 20, 36, 45, 49, 53, 69, 83, 94, 105, 116, 122, 122, 146, 164, 178, 191, 204, 217, 229, 244, 253, 265, 263, 293, 309, 328, 339, 357, 372, 385, 400, 415, 430, 447, 462, 476, 490, 504, 516, 541, 536, 573, 580, 600, 618, 636, 654, 671, 686, 704
OFFSET
1,2
COMMENTS
Zeckendorf distance is defined at A226207. For n = 100, the Zeckendorf distance between n! and (n+1)! is 704, compared to the linear distance which exceeds 10^150; in general, the Zeckendorf distance between two large integers tends to be notably less than the ordinary distance.
LINKS
EXAMPLE
4! = 21 + 3 -> 13 + 2 -> 8 + 1 -> 5 -> 3, and 5! = 89 + 21 + 8 + 2 -> 55 + 13 + 5 + 1 -> 34 + 8 + 3 -> 21 + 5 + 2 -> 13 + 3 + 1 -> 8 + 2 -> 5 + 1 -> 3. The total number of Zeckendorf downshifts (i.e., arrows) is 4 + 7, so that a(4) = D(24,120) = 11.
MATHEMATICA
zeck[n_Integer] := Block[{k = Ceiling[Log[GoldenRatio, n*Sqrt[5]]], t = n, z = {}}, While[k > 1, If[t >= Fibonacci[k], AppendTo[z, 1]; t = t - Fibonacci[k], AppendTo[z, 0]]; k--]; If[n > 0 && z[[1]] == 0, Rest[z], z]]; d[n1_, n2_] := Module[{z1 = zeck[n1], z2 = zeck[n2]}, Length[z1] + Length[z2] - 2 (NestWhile[# + 1 &, 1, z1[[#]] == z2[[#]] &, 1,
Min[{Length[z1], Length[z2]}]] - 1)]; lst = Map[d[#!, (#+1)!]] &, Range[100]] (* Peter J. C. Moses, May 30 2013 *)
CROSSREFS
Sequence in context: A191053 A209493 A117877 * A169745 A171769 A025200
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, May 31 2013
STATUS
approved