OFFSET
0,2
COMMENTS
Maximum value of the integral in the Riemann prime counting function.
REFERENCES
John Derbyshire, Prime Obsession, Joseph Henry Press, 2003, pp. 328-329.
Bernhard Riemann, On the Number of Prime Numbers less than a Given Quantity, 1859.
LINKS
Robert G. Wilson v, Table of n, a(n) for n = 0..2509
Eric Weisstein's World of Mathematics, Riemann Prime Counting Function
EXAMPLE
0.1400101011432869266869173052342997331775279281270658289489468743113049149...
MAPLE
evalf(Integrate(1/(x*log(x)*(x^2-1)), x = 2..infinity), 120); # Vaclav Kotesovec, Feb 13 2019
MATHEMATICA
RealDigits[ NIntegrate[1/(t Log[t](t^2 - 1)), {t, 2, Infinity}, MaxRecursion -> 8, AccuracyGoal -> 115, WorkingPrecision -> 128]][[1]] (* Robert G. Wilson v, Jul 05 2004 *)
PROG
(PARI) default(realprecision, 120); intnum(x=2, oo, 1/(x*log(x)*(x^2 - 1))) \\ Vaclav Kotesovec, Feb 13 2019
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Eric W. Weisstein, Jul 01 2004
STATUS
approved