login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A096623
Decimal expansion of Integral_{t>=2} 1/(t*log(t)(t^2-1)) dt.
2
1, 4, 0, 0, 1, 0, 1, 0, 1, 1, 4, 3, 2, 8, 6, 9, 2, 6, 6, 8, 6, 9, 1, 7, 3, 0, 5, 2, 3, 4, 2, 9, 9, 7, 3, 3, 1, 7, 7, 5, 2, 7, 9, 2, 8, 1, 2, 7, 0, 6, 5, 8, 2, 8, 9, 4, 8, 9, 4, 6, 8, 7, 4, 3, 1, 1, 3, 0, 4, 9, 1, 4, 9, 9, 5, 1, 6, 1, 3, 6, 1, 0, 2, 7, 6, 0, 2, 6, 5, 3, 2, 0, 6, 4, 8, 6, 6, 6, 9, 6, 3, 4, 3, 4, 5
OFFSET
0,2
COMMENTS
Maximum value of the integral in the Riemann prime counting function.
REFERENCES
John Derbyshire, Prime Obsession, Joseph Henry Press, 2003, pp. 328-329.
Bernhard Riemann, On the Number of Prime Numbers less than a Given Quantity, 1859.
LINKS
Eric Weisstein's World of Mathematics, Riemann Prime Counting Function
EXAMPLE
0.1400101011432869266869173052342997331775279281270658289489468743113049149...
MAPLE
evalf(Integrate(1/(x*log(x)*(x^2-1)), x = 2..infinity), 120); # Vaclav Kotesovec, Feb 13 2019
MATHEMATICA
RealDigits[ NIntegrate[1/(t Log[t](t^2 - 1)), {t, 2, Infinity}, MaxRecursion -> 8, AccuracyGoal -> 115, WorkingPrecision -> 128]][[1]] (* Robert G. Wilson v, Jul 05 2004 *)
PROG
(PARI) default(realprecision, 120); intnum(x=2, oo, 1/(x*log(x)*(x^2 - 1))) \\ Vaclav Kotesovec, Feb 13 2019
CROSSREFS
Sequence in context: A331438 A215061 A215060 * A171914 A200627 A152889
KEYWORD
nonn,cons
AUTHOR
Eric W. Weisstein, Jul 01 2004
STATUS
approved