The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A096623 Decimal expansion of Integral_{t>=2} 1/(t*log(t)(t^2-1)) dt. 2
 1, 4, 0, 0, 1, 0, 1, 0, 1, 1, 4, 3, 2, 8, 6, 9, 2, 6, 6, 8, 6, 9, 1, 7, 3, 0, 5, 2, 3, 4, 2, 9, 9, 7, 3, 3, 1, 7, 7, 5, 2, 7, 9, 2, 8, 1, 2, 7, 0, 6, 5, 8, 2, 8, 9, 4, 8, 9, 4, 6, 8, 7, 4, 3, 1, 1, 3, 0, 4, 9, 1, 4, 9, 9, 5, 1, 6, 1, 3, 6, 1, 0, 2, 7, 6, 0, 2, 6, 5, 3, 2, 0, 6, 4, 8, 6, 6, 6, 9, 6, 3, 4, 3, 4, 5 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Maximum value of the integral in the Riemann prime counting function. LINKS Robert G. Wilson v, Table of n, a(n) for n = 0..2509 Eric Weisstein's World of Mathematics, Riemann Prime Counting Function EXAMPLE 0.1400101011432869266869173052342997331775279281270658289489468743113049149... MAPLE evalf(Integrate(1/(x*log(x)*(x^2-1)), x = 2..infinity), 120); # Vaclav Kotesovec, Feb 13 2019 MATHEMATICA RealDigits[ NIntegrate[1/(t Log[t](t^2 - 1)), {t, 2, Infinity}, MaxRecursion -> 8, AccuracyGoal -> 115, WorkingPrecision -> 128]][[1]] (* Robert G. Wilson v, Jul 05 2004 *) PROG (PARI) default(realprecision, 120); intnum(x=2, oo, 1/(x*log(x)*(x^2 - 1))) \\ Vaclav Kotesovec, Feb 13 2019 CROSSREFS Sequence in context: A331438 A215061 A215060 * A171914 A200627 A152889 Adjacent sequences:  A096620 A096621 A096622 * A096624 A096625 A096626 KEYWORD nonn,cons AUTHOR Eric W. Weisstein, Jul 01 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 12 13:46 EDT 2021. Contains 343823 sequences. (Running on oeis4.)