The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A215060 Triangle read by rows, e.g.f. exp(x*(z+1/2))/((exp(3*x/2) + 2*cos(sqrt(3)*x/2))/3). 5
 1, 0, 1, 0, 0, 1, -1, 0, 0, 1, 0, -4, 0, 0, 1, 0, 0, -10, 0, 0, 1, 19, 0, 0, -20, 0, 0, 1, 0, 133, 0, 0, -35, 0, 0, 1, 0, 0, 532, 0, 0, -56, 0, 0, 1, -1513, 0, 0, 1596, 0, 0, -84, 0, 0, 1, 0, -15130, 0, 0, 3990, 0, 0, -120, 0, 0, 1, 0, 0, -83215, 0 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,12 LINKS FORMULA Matrix inverse is A215061. T(n,k) = A215064(n,k) - A215062(n,k) + [n==k]. |T(3*n,0)| = A002115(n). EXAMPLE [0] [1] [1] [0, 1] [2] [0, 0, 1] [3] [-1, 0, 0, 1] [4] [0, -4, 0, 0, 1] [5] [0, 0, -10, 0, 0, 1] [6] [19, 0, 0, -20, 0, 0, 1] [7] [0, 133, 0, 0, -35, 0, 0, 1] [8] [0, 0, 532, 0, 0, -56, 0, 0, 1] [9] [-1513, 0, 0, 1596, 0, 0, -84, 0, 0, 1] PROG (Sage) def triangle(f, dim):     var('x, z')     s = f.series(x, dim+2)     P = [factorial(i)*s.coefficient(x, i) for i in range(dim)]     for k in range(dim): print([k], [P[k].coefficient(z, i) for i in (0..k)]) def A215060_triangle(dim) :     var('x, z')     f = exp(x*(z+1/2))/((exp(3*x/2)+2*cos(sqrt(3)*x/2))/3)     return triangle(f, dim) A215060_triangle(12) CROSSREFS Cf. A215061, A215062, A215063, A215064, A215065. Sequence in context: A335510 A331438 A215061 * A096623 A171914 A200627 Adjacent sequences:  A215057 A215058 A215059 * A215061 A215062 A215063 KEYWORD sign,tabl AUTHOR Peter Luschny, Aug 01 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 17 06:30 EDT 2021. Contains 343965 sequences. (Running on oeis4.)