login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A200627
Decimal expansion of the greater of two values of x satisfying 5*x^2 - 4 = tan(x) and 0 < x < Pi/2.
3
1, 4, 0, 0, 1, 0, 2, 5, 5, 5, 3, 3, 6, 9, 4, 1, 7, 4, 1, 8, 3, 1, 9, 5, 9, 3, 7, 1, 5, 7, 1, 5, 8, 5, 4, 7, 3, 0, 5, 3, 8, 8, 4, 6, 9, 6, 6, 3, 4, 1, 9, 0, 6, 0, 7, 3, 0, 4, 4, 3, 6, 4, 3, 4, 4, 5, 2, 6, 9, 3, 7, 2, 9, 0, 5, 1, 9, 5, 1, 5, 7, 0, 3, 3, 9, 8, 8, 1, 7, 5, 6, 5, 2, 3, 4, 9, 1, 0, 1
OFFSET
1,2
COMMENTS
See A200614 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
lesser: 1.0862483073723514930516537470257901302111...
greater: 1.4001025553369417418319593715715854730538...
MATHEMATICA
a = 5; c = 4;
f[x_] := a*x^2 - c; g[x_] := Tan[x]
Plot[{f[x], g[x]}, {x, -.1, Pi/2}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, .9, 1.0}, WorkingPrecision -> 110]
RealDigits[r] (* A200626 *)
r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110]
RealDigits[r] (* A200627 *)
CROSSREFS
Cf. A200614.
Sequence in context: A215060 A096623 A171914 * A152889 A216273 A327517
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Nov 20 2011
STATUS
approved