OFFSET
1,1
COMMENTS
If n is prime, then a(n) = 2n+1; thus if n is a Sophie Germain prime p, then a(p) gives the safe prime q=2p+1.
If n is semiprime, then a(n) = sigma(n).
If m and n are coprime, then a(m*n) = a(m) + a(n) + (m-1)*(n-1) - 2. - Robert Israel, May 04 2015
FORMULA
MAPLE
map(t -> t+1+convert(numtheory:-factorset(t), `+`), [$1..100]); # Robert Israel, May 04 2015
MATHEMATICA
Table[n + 1 + DivisorSum[n, # &, PrimeQ[#] &], {n, 100}]
PROG
(PARI) vector(100, n, vecsum(factor(n)[, 1]~)+n+1) \\ Derek Orr, May 13 2015
(Magma) [&+PrimeDivisors(n)+n+1: n in [1..70]]; // Bruno Berselli, May 27 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, May 03 2015
STATUS
approved