OFFSET
1,2
COMMENTS
For 1, 228, 501888, 1207944, 29720448, etc., being their ratio equal to 1, we have that Sum_{j=1..m}{sigma(k) mod d_j} is the sum of their aliquot parts.
The ratios for the listed terms are 1, 2, 2, 16, 1, 8, 2048, 2, 2, 22, 1, 512, 1, 25976, 32, 1, 67108864, 32768, ...
a(21) > 6 * 10^10. - Lucas A. Brown, Mar 10 2021
LINKS
Lucas A. Brown, A282774+5.py
EXAMPLE
sigma(50) = 93; divisors of 50 are 1, 2, 5, 10, 25, 50 and
93 mod 1 + 93 mod 2 + 93 mod 4 + 93 mod 5 + 93 mod 10 + 93 mod 25 + 93 mod 50 = 0 + 1 + 3 + 3 + 18 + 43 = 68 and 50 / (93-68) = 2.
MAPLE
with(numtheory): P:=proc(q) local a, b, c, k, n;
for n from 1 to q do if not isprime(n) then a:=sigma(n); b:=sort([op(divisors(n))]);
c:=add(a mod b[k], k=1..nops(b)); if type(n/(a-c), integer) then print(n); fi; fi; od; end: P(10^9);
PROG
(PARI) isok(k) = !isprime(k) && !(k % (sigma(k) - sumdiv(k, d, sigma(k) % d))); \\ Michel Marcus, Mar 10 2021
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Paolo P. Lava, Feb 22 2017
EXTENSIONS
a(14)-a(18) from Giovanni Resta, Feb 23 2017
Name clarified and a(19)-a(20) from Lucas A. Brown, Mar 10 2021
STATUS
approved