|
|
A272138
|
|
Numbers n such that Bernoulli number B_{n} has denominator 798.
|
|
27
|
|
|
18, 54, 342, 558, 774, 1026, 1206, 1674, 1962, 2322, 2826, 2934, 3006, 3474, 3618, 3798, 4014, 4086, 4122, 4842, 5706, 5886, 6282, 6354, 6498, 6894, 7002, 7362, 7578, 7794, 7902, 8082, 8226, 8334, 8478, 8766, 8982, 9018, 9378, 9414, 9846, 10134, 10278, 10422, 10602, 10782
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
798 = 2 * 3 * 7 * 19.
All terms are multiple of a(1) = 18.
For these numbers numerator(B_{n}) mod denominator(B_{n}) = 775.
|
|
LINKS
|
|
|
EXAMPLE
|
Bernoulli B_{18} is 43867/798, hence 18 is in the sequence.
|
|
MAPLE
|
with(numtheory): P:=proc(q, h) local n; for n from 2 by 2 to q do
if denom(bernoulli(n))=h then print(n); fi; od; end: P(10^6, 798);
|
|
MATHEMATICA
|
Select[Range[0, 1000], Denominator[BernoulliB[#]] == 798 &] (* Robert Price, Apr 21 2016 *)
|
|
PROG
|
(PARI) lista(nn) = for(n=1, nn, if(denominator(bernfrac(n)) == 798, print1(n, ", "))); \\ Altug Alkan, Apr 22 2016
|
|
CROSSREFS
|
Cf. A045979, A051222, A051225, A051226, A051227, A051228, A051229, A051230, A119456, A119480, A249134, A255684, A271634, A271635, A272139, A272140, A272183, A272184, A272185, A272186.
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|