|
|
A088593
|
|
a(0)=18; a(n+1) = largest odd factor of 3*a(n)+1; stop when a(n)=1.
|
|
0
|
|
|
18, 55, 83, 125, 47, 71, 107, 161, 121, 91, 137, 103, 155, 233, 175, 263, 395, 593, 445, 167, 251, 377, 283, 425, 319, 479, 719, 1079, 1619, 2429, 911, 1367, 2051, 3077, 577, 433, 325, 61, 23, 35, 53, 5, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
Similar to a Collatz sequence.
|
|
LINKS
|
Table of n, a(n) for n=0..42.
|
|
FORMULA
|
a(n+1) = A000265(3*a(n)+1). - Michel Marcus, Aug 23 2022
|
|
EXAMPLE
|
a(4)=47 because (a(3)*3+1)/2^3 = 47.
|
|
PROG
|
(PARI) f(n) = n >> valuation(n, 2); \\ A000265
lista(nn) = my(list=List(), x = 18, i=0); while (1, listput(list, x); x = f(3*x+1); i++; if (i>100, break)); Vec(list); \\ Michel Marcus, Aug 23 2022
|
|
CROSSREFS
|
Cf. A000265.
Sequence in context: A069973 A272138 A041630 * A033571 A041632 A086540
Adjacent sequences: A088590 A088591 A088592 * A088594 A088595 A088596
|
|
KEYWORD
|
easy,nonn,fini,full
|
|
AUTHOR
|
Mitch Cervinka (puritan(AT)planetkc.com), Nov 20 2003
|
|
EXTENSIONS
|
Edited by Don Reble, Nov 08 2005
Corrected by Doug Unger, Aug 26 2022
|
|
STATUS
|
approved
|
|
|
|