login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A232546
Expansion of (1 - 12*x)^(3/2) in powers of x.
2
1, -18, 54, 108, 486, 2916, 20412, 157464, 1299078, 11258676, 101328084, 939587688, 8926083036, 86514343272, 852784240824, 8527842408240, 86344404383430, 883760374277460, 9132190534200420, 95167038198509640, 999253901084351220, 10563541240034570040
OFFSET
0,2
COMMENTS
From Ralf Steiner, Apr 04 2017: (Start)
By analytic continuation to the entire complex plane there exist regularized values for divergent sums such as:
Sum_{k>=0} a(k)^2/16^k = 2F1(-3/2,-3/2,1,9).
Sum_{k>=0} a(k) / 6^k = -i. (End)
LINKS
R. Steiner, Sums of OEIS-A232546, ResearchGate, 2017. - Ralf Steiner, Apr 04 2017
FORMULA
0 = a(n+2)*(a(n+1) - 42*a(n)) + 18*a(n+1)*(a(n+1) + 8*a(n)) for all n in Z.
a(n+2) = 54 * A000168(n). a(n) = 3^n * A002421(n). Convolution inverse of A115903.
a(n) = 6*(2*n-5)*a(n-1)/n. - R. J. Mathar, Nov 23 2014
G.f.: 1F0(-3/2;;12x). - R. J. Mathar, Aug 09 2015
For n>=2, a(n) = 4*3^(n+1)*(2*n-4)! / ((n-2)!*n!). - Vaclav Kotesovec, Apr 02 2017
Sum_{k>=0} a(k) / 12^k = 0. - Ralf Steiner, Apr 04 2017
EXAMPLE
G.f. = 1 - 18*x + 54*x^2 + 108*x^3 + 486*x^4 + 2916*x^5 + 20412*x^6 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ (1 - 12 x)^(3/2), {x, 0, n}];
Table[9/Sqrt[Pi] 12^n Gamma[-1/2 + n]/Gamma[2 + n], {n, -1, 20}] (* Ralf Steiner, Apr 01 2017 *)
Flatten[{1, -18, Table[4*3^(n+1)*(2*n-4)!/((n-2)!*n!), {n, 2, 25}]}] (* Vaclav Kotesovec, Apr 02 2017 *)
PROG
(PARI) {a(n) = if( n<0, 0, polcoeff( (1 - 12 * x + x * O(x^n))^(3/2), n))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Nov 25 2013
STATUS
approved