login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of (1 - 12*x)^(3/2) in powers of x.
2

%I #81 Apr 05 2017 08:00:45

%S 1,-18,54,108,486,2916,20412,157464,1299078,11258676,101328084,

%T 939587688,8926083036,86514343272,852784240824,8527842408240,

%U 86344404383430,883760374277460,9132190534200420,95167038198509640,999253901084351220,10563541240034570040

%N Expansion of (1 - 12*x)^(3/2) in powers of x.

%C From _Ralf Steiner_, Apr 04 2017: (Start)

%C By analytic continuation to the entire complex plane there exist regularized values for divergent sums such as:

%C Sum_{k>=0} a(k)^2/16^k = 2F1(-3/2,-3/2,1,9).

%C Sum_{k>=0} a(k) / 6^k = -i. (End)

%H G. C. Greubel, <a href="/A232546/b232546.txt">Table of n, a(n) for n = 0..930</a>

%H R. Steiner, <a href="https://www.researchgate.net/publication/315740800">Sums of OEIS-A232546</a>, ResearchGate, 2017. - _Ralf Steiner_, Apr 04 2017

%F 0 = a(n+2)*(a(n+1) - 42*a(n)) + 18*a(n+1)*(a(n+1) + 8*a(n)) for all n in Z.

%F a(n+2) = 54 * A000168(n). a(n) = 3^n * A002421(n). Convolution inverse of A115903.

%F a(n) = 6*(2*n-5)*a(n-1)/n. - _R. J. Mathar_, Nov 23 2014

%F G.f.: 1F0(-3/2;;12x). - _R. J. Mathar_, Aug 09 2015

%F For n>=2, a(n) = 4*3^(n+1)*(2*n-4)! / ((n-2)!*n!). - _Vaclav Kotesovec_, Apr 02 2017

%F Sum_{k>=0} a(k) / 12^k = 0. - _Ralf Steiner_, Apr 04 2017

%e G.f. = 1 - 18*x + 54*x^2 + 108*x^3 + 486*x^4 + 2916*x^5 + 20412*x^6 + ...

%t a[ n_] := SeriesCoefficient[ (1 - 12 x)^(3/2), {x, 0, n}];

%t Table[9/Sqrt[Pi] 12^n Gamma[-1/2 + n]/Gamma[2 + n], {n, -1, 20}] (* _Ralf Steiner_, Apr 01 2017 *)

%t Flatten[{1, -18, Table[4*3^(n+1)*(2*n-4)!/((n-2)!*n!), {n, 2, 25}]}] (* _Vaclav Kotesovec_, Apr 02 2017 *)

%o (PARI) {a(n) = if( n<0, 0, polcoeff( (1 - 12 * x + x * O(x^n))^(3/2), n))};

%Y Cf. A000168, A002421, A115903.

%K sign

%O 0,2

%A _Michael Somos_, Nov 25 2013