login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Partial sums of A000340, second partial sums of A003462.
6

%I #22 Mar 22 2020 03:59:27

%S 1,6,24,82,261,804,2440,7356,22113,66394,199248,597822,1793557,

%T 5380776,16142448,48427480,145282593,435847950,1307544040,3922632330,

%U 11767897221,35303691916,105911076024,317733228372,953199685441

%N Partial sums of A000340, second partial sums of A003462.

%D A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 189, 194-196.

%D P. Ribenhoim, The Little Book of Big Primes, Springer-Verlag, N.Y., 1991, p. 53.

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (6,-12,10,-3).

%F a(n) = ((3^(n+3)) - (2*(n^2) + 12n + 19))/8.

%F a(n) = 3a(n-1)+C(n+2,2); a(0)=1.

%F a(n) = sum{k=0..n, binomial(n+3, k+3)2^k}. - _Paul Barry_, Aug 20 2004

%F From _Colin Barker_, Dec 18 2012: (Start)

%F a(n) = 6*a(n-1) - 12*a(n-2) + 10*a(n-3) - 3*a(n-4).

%F G.f.: 1/((x-1)^3*(3*x-1)). (End)

%t LinearRecurrence[{6,-12,10,-3},{1,6,24,82},40] (* _Harvey P. Dale_, Sep 05 2013 *)

%Y Cf. A003462, A000340.

%K easy,nonn

%O 0,2

%A _Barry E. Williams_, Jan 23 2000