login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A218376
a(n) = 5^n*sum_{i=1..n} i^5/5^i.
1
0, 1, 37, 428, 3164, 18945, 102501, 529312, 2679328, 13455689, 67378445, 337053276, 1685515212, 8427947353, 42140274589, 210702132320, 1053511710176, 5267559970737, 26337801743253, 131689011192364, 658445059161820
OFFSET
0,3
FORMULA
From Peter Bala, Nov 29 2012: (Start)
a(n) = 1/512*(3535*5^n - (128*n^5 + 800*n^4 + 2400*n^3 + 4600*n^2 + 5700*n + 3535)).
Recurrence equation: a(n) = 5*a(n-1) + n^5.
G.f.: (x + 26*x^2 + 66*x^3 + 26*x^4 + x^5)/((1 - 5*x)*(1 - x)^6) = x + 37*x^2 + 428*x^3 + ....
(End)
MATHEMATICA
f[n_] := 5^n*Sum[i^5/5^i, {i, n}]; Array[f, 30, 0]
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Robert G. Wilson v, Nov 28 2012
STATUS
approved