login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A090184
Number of partitions of the n-th 3-smooth number into parts 2 and 3.
5
0, 1, 1, 1, 2, 2, 2, 3, 3, 4, 5, 5, 6, 7, 9, 10, 11, 13, 14, 17, 19, 22, 25, 28, 33, 37, 41, 43, 49, 55, 65, 73, 82, 86, 97, 109, 122, 129, 145, 163, 171, 193, 217, 244, 257, 289, 325, 342, 365, 385, 433, 487, 513, 577, 649, 683, 730, 769, 865, 973, 1025, 1094, 1153
OFFSET
1,5
LINKS
FORMULA
a(2^i * 3^j) = floor(2^(i-1) * 3^(j-1) + 1), i*j>0.
a(n) = A103221(A003586(n)).
EXAMPLE
n=11: A003586(11) = 2^3 * 3 = 24: 3+3+3+3+3+3+3+3 = 3+3+3+3+3+3+2+2+2 = 3+3+3+3+2+2+2+2+2+2 = 3+3+2+2+2+2+2+2+2+2+2 = 2+2+2+2+2+2+2+2+2+2+2+2: a(11)=5.
MATHEMATICA
smooth3Q[n_] := n/2^IntegerExponent[n, 2]/3^IntegerExponent[n, 3] == 1;
Length[IntegerPartitions[#, All, {2, 3}]]& /@ Select[Range[10000], smooth3Q] (* Jean-François Alcover, Oct 13 2021 *)
With[{nn = 6^5}, Map[Floor[#/2] - Floor[#/3] &, Union@ Flatten@ Table[2^a * 3^b, {a, 0, Log2[#]}, {b, 0, Log[3, #/(2^a)]}] &[nn] + 2]] (* Michael De Vlieger, Oct 13 2021 *)
PROG
(Python)
from sympy import integer_log
def A090184(n):
def bisection(f, kmin=0, kmax=1):
while f(kmax) > kmax: kmax <<= 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
def f(x): return n+x-sum((x//3**i).bit_length() for i in range(integer_log(x, 3)[0]+1))
return ((m:=bisection(f, n, n)+2)>>1)-m//3 # Chai Wah Wu, Oct 22 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Jan 21 2004
EXTENSIONS
Offset changed to 1 by Alois P. Heinz, Oct 15 2021
STATUS
approved