OFFSET
1,5
LINKS
Michael De Vlieger, Table of n, a(n) for n = 1..10000
EXAMPLE
n=11: A003586(11) = 2^3 * 3 = 24: 3+3+3+3+3+3+3+3 = 3+3+3+3+3+3+2+2+2 = 3+3+3+3+2+2+2+2+2+2 = 3+3+2+2+2+2+2+2+2+2+2 = 2+2+2+2+2+2+2+2+2+2+2+2: a(11)=5.
MATHEMATICA
smooth3Q[n_] := n/2^IntegerExponent[n, 2]/3^IntegerExponent[n, 3] == 1;
Length[IntegerPartitions[#, All, {2, 3}]]& /@ Select[Range[10000], smooth3Q] (* Jean-François Alcover, Oct 13 2021 *)
With[{nn = 6^5}, Map[Floor[#/2] - Floor[#/3] &, Union@ Flatten@ Table[2^a * 3^b, {a, 0, Log2[#]}, {b, 0, Log[3, #/(2^a)]}] &[nn] + 2]] (* Michael De Vlieger, Oct 13 2021 *)
PROG
(Python)
from sympy import integer_log
def A090184(n):
def bisection(f, kmin=0, kmax=1):
while f(kmax) > kmax: kmax <<= 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
def f(x): return n+x-sum((x//3**i).bit_length() for i in range(integer_log(x, 3)[0]+1))
return ((m:=bisection(f, n, n)+2)>>1)-m//3 # Chai Wah Wu, Oct 22 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Jan 21 2004
EXTENSIONS
Offset changed to 1 by Alois P. Heinz, Oct 15 2021
STATUS
approved