login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A136461
Expansion of e.g.f.: A(x) = -(1 + LambertW(-log(1+x))/log(1+x))/x.
3
1, 1, 3, 14, 96, 849, 9362, 123101, 1888016, 33066768, 651883152, 14286514186, 344690210928, 9079702374300, 259327537407416, 7983107543564724, 263518937698466304, 9285770278110061664, 347916420499685643072, 13812127364516107258944, 579183295530010157485824
OFFSET
0,3
COMMENTS
A033917 gives the coefficients of iterated exponential function defined by y(x) = x^y(x) expanded about x=1.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..400 (first 71 terms from Vincenzo Librandi)
FORMULA
a(n) = A033917(n+1)/(n+1).
E.g.f.: A(x) = (1/x)*Sum_{i>=1} (i+1)^(i-1) * log(1+x)^i/i!.
a(n) ~ n^(n-1) / ( exp(n-3/2+exp(-1)/2) * (exp(exp(-1))-1)^(n+1/2) ). - Vaclav Kotesovec, Nov 27 2012
MAPLE
a:= n-> add(Stirling1(n+1, k)*(k+1)^(k-1), k=0..n+1)/(n+1):
seq(a(n), n=0..25); # Alois P. Heinz, Jan 21 2016
MATHEMATICA
CoefficientList[Series[-(1+LambertW[-Log[1+x]]/Log[1+x])/x, {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Nov 27 2012 *)
PROG
(PARI) {a(n)=n!*polcoeff(sum(i=0, n+1, (i+1)^(i-1)*log(1+x +O(x^(n+2) ))^i/i!), n+1)}
(PARI) x='x+O('x^30); Vec(serlaplace(-(1+lambertw(-log(1+x))/log(1+x))/x )) \\ G. C. Greubel, Feb 19 2018
CROSSREFS
Cf. A033917.
Row sums of A295027 (shifted).
Main diagonal of A295028 (shifted).
Sequence in context: A295108 A295109 A295110 * A375225 A336525 A345106
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 31 2007
STATUS
approved