login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A136463
Diagonal of square array A136462: a(n) = C((n+1)*2^(n-1), n) for n>=0.
3
1, 2, 15, 560, 91390, 61124064, 163995687856, 1756185841659392, 75079359427627897200, 12831653340946454374300160, 8777916355714456994772455584000, 24054320541767107204031746600673906688
OFFSET
0,2
COMMENTS
a(n) is divisible by (n+1) for n>=0: a(n)/(n+1) = A136464(n).
FORMULA
a(n) = [x^n] Sum_{i>=0} ((n+1)/2)^i * log(1 + 2^i*x)^i/i!.
a(n) is found in row n, column 0, of matrix power A136467^(n+1) for n>=0.
a(n) ~ exp(n+1) * 2^(n*(n-1)) / sqrt(2*Pi*n). - Vaclav Kotesovec, Jul 02 2016
MATHEMATICA
Table[Binomial[(n+1)2^(n-1), n], {n, 0, 15}] (* Harvey P. Dale, Apr 20 2011 *)
PROG
(PARI) a(n)=binomial((n+1)*2^(n-1), n)
(PARI) /* a(n) = Coefficient of x^n in series: */
a(n)=polcoeff(sum(i=0, n, ((n+1)/2)^i*log(1+2^i*x +x*O(x^n))^i/i!), n)
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 31 2007
STATUS
approved