login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A136466
Row 2 of square array A136462: a(n) = C(3*2^(n-1), n) for n>=0.
3
1, 3, 15, 220, 10626, 1712304, 927048304, 1708566412608, 10895665708319184, 244373929798154341120, 19561373281624772727757056, 5658395223117478029148167447552, 5975982733408602667847206514763365888
OFFSET
0,2
COMMENTS
a(n) is found in row n, column 0, of matrix cube A136467^3 for n>=0.
FORMULA
a(n) = [x^n] Sum_{i>=0} (3/2)^i * log(1 + 2^i*x)^i/i!.
a(n) ~ 3^n * 2^(n*(n-1)) / n!. - Vaclav Kotesovec, Jul 02 2016
MATHEMATICA
Table[Binomial[3*2^(n-1), n], {n, 0, 15}] (* Vaclav Kotesovec, Jul 02 2016 *)
PROG
(PARI) a(n)=binomial(3*2^(n-1), n)
(PARI) /* T(n, k) = Coefficient of x^k in series: */ a(n)=polcoeff(sum(i=0, n, (3/2)^i*log(1+2^i*x +x*O(x^n))^i/i!), n)
CROSSREFS
Cf. A136462; other rows: A136465, A014070, A101346; A136467.
Sequence in context: A126453 A007081 A126455 * A296856 A303290 A298114
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 31 2007
STATUS
approved