login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A136465
Row 0 of square array A136462: a(n) = C(2^(n-1), n) for n>=0.
6
1, 1, 1, 4, 70, 4368, 906192, 621216192, 1429702652400, 11288510714272000, 312268282598377321216, 30813235422145714150738944, 11005261717918037175659349191168, 14391972654784168932973746746691440640, 69538271351155829150354851003285125277716480, 1250303357941919088313448625534941836891635347865600
OFFSET
0,4
COMMENTS
a(n) is found in row n, column 0, of triangle A136467 for n>=0.
For n > 0, number of increasing integer sequences 1 <= a_1 < ... < a_n <= 2^(n-1). - Charles R Greathouse IV, Aug 08 2010
The (n-1)-dimensional hypercube has 2^(n-1) corners. There are binomial(2^(n-1),n) ways of selecting a set of n corners. So a(n) is the number of simplices (hyper-tetrahedra) with vertices defined by a corner subset of a (n-1)-dimensional hypercube. (This count includes degenerate polytopes with zero volume.) - R. J. Mathar, Jan 16 2016
LINKS
J. Brandts, S. Dijkhuis, V. de Haan, M. Krizek, There are only two nonobtuse binary triangulations of the unit n-cube, Comp. Geom. 46 (2013) 286-297, Table 1.
FORMULA
a(n) = [x^n] Sum_{i>=0} (1/2)^i * log(1 + 2^i*x)^i/i!.
O.g.f.: Sum_{n>=0} log(1 + 2^n*x)^n / (n!*2^n). - Paul D. Hanna, Sep 26 2010
a(n) ~ 2^(n*(n-1)) / n!. - Vaclav Kotesovec, Jul 02 2016
EXAMPLE
From Paul D. Hanna, Sep 26 2010: (Start)
G.f.: A(x) = 1 + x + x^2 + 4*x^3 + 70*x^4 + 4368*x^5 +...
A(x) = 1 + log(1+2*x)/2 + log(1 + 2^2*x)^2/(2!*2^2) + log(1 + 2^3*x)^3/(3!*2^3) + log(1 + 2^4*x)^4/(4!*2^4) +... (End)
MATHEMATICA
Table[Binomial[2^(n-1), n], {n, 0, 15}] (* Vaclav Kotesovec, Jul 02 2016 *)
PROG
(PARI) {a(n)=binomial(2^(n-1), n)}
for(n=0, 20, print1(a(n), ", "))
(PARI) /* a(n) = Coefficient of x^k in series: */
{a(n)=polcoeff(sum(i=0, n, (1/2)^i*log(1+2^i*x +x*O(x^n))^i/i!), n)}
for(n=0, 20, print1(a(n), ", "))
(PARI) {a(n)=polcoeff(sum(m=0, n, log(1+2^m*x+x*O(x^n))^m/(m!*2^m)), n)}
for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Sep 26 2010
CROSSREFS
Cf. A136462; other rows: A014070, A136466, A101346; A136467.
Sequence in context: A349457 A301586 A367434 * A184576 A367523 A162135
KEYWORD
nonn,easy
AUTHOR
Paul D. Hanna, Dec 31 2007
STATUS
approved