login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A295028
A(n,k) is (1/n) times the n-th derivative of the k-th tetration of x (power tower of order k) x^^k at x=1; square array A(n,k), n>=1, k>=1, read by antidiagonals.
13
1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 3, 2, 0, 1, 1, 3, 8, 2, 0, 1, 1, 3, 14, 36, 9, 0, 1, 1, 3, 14, 72, 159, -6, 0, 1, 1, 3, 14, 96, 489, 932, 118, 0, 1, 1, 3, 14, 96, 729, 3722, 5627, -568, 0, 1, 1, 3, 14, 96, 849, 6842, 33641, 40016, 4716, 0
OFFSET
1,13
LINKS
Eric Weisstein's World of Mathematics, Power Tower
Wikipedia, Tetration
FORMULA
A(n,k) = 1/n * [(d/dx)^n x^^k]_{x=1}.
A(n,k) = (n-1)! * [x^n] (x+1)^^k.
A(n,k) = Sum_{i=0..min(n,k)} A295027(n,i).
A(n,k) = 1/n * A277537(n,k).
EXAMPLE
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 3, 3, 3, 3, 3, 3, ...
0, 2, 8, 14, 14, 14, 14, 14, ...
0, 2, 36, 72, 96, 96, 96, 96, ...
0, 9, 159, 489, 729, 849, 849, 849, ...
0, -6, 932, 3722, 6842, 8642, 9362, 9362, ...
0, 118, 5627, 33641, 71861, 102941, 118061, 123101, ...
MAPLE
f:= proc(n) f(n):= `if`(n=0, 1, (x+1)^f(n-1)) end:
A:= (n, k)-> (n-1)!*coeff(series(f(k), x, n+1), x, n):
seq(seq(A(n, 1+d-n), n=1..d), d=1..14);
# second Maple program:
b:= proc(n, k) option remember; `if`(n=0, 1, `if`(k=0, 0,
-add(binomial(n-1, j)*b(j, k)*add(binomial(n-j, i)*
(-1)^i*b(n-j-i, k-1)*(i-1)!, i=1..n-j), j=0..n-1)))
end:
A:= (n, k)-> b(n, min(k, n))/n:
seq(seq(A(n, 1+d-n), n=1..d), d=1..14);
MATHEMATICA
b[n_, k_] := b[n, k] = If[n == 0, 1, If[k == 0, 0, -Sum[Binomial[n - 1, j]*b[j, k]*Sum[Binomial[n - j, i]*(-1)^i*b[n - j - i, k - 1]*(i - 1)!, {i, 1, n - j}], {j, 0, n - 1}]]];
A[n_, k_] := b[n, Min[k, n]]/n;
Table[A[n, 1 + d - n], {d, 1, 14}, {n, 1, d}] // Flatten (* Jean-François Alcover, May 25 2018, translated from 2nd Maple program *)
CROSSREFS
Main diagonal gives A136461(n-1).
Sequence in context: A293202 A280265 A292795 * A294201 A079618 A151844
KEYWORD
sign,tabl
AUTHOR
Alois P. Heinz, Nov 12 2017
STATUS
approved