login
A295025
Cubes whose largest digit is 5.
7
125, 512, 125000, 405224, 512000, 531441, 1225043, 5000211, 5545233, 13312053, 43243551, 54010152, 102503232, 115501303, 125000000, 221445125, 320013504, 400315553, 405224000, 512000000, 531441000, 1204550144, 1225043000, 2053225511, 2253243231, 2543302125
OFFSET
1,1
COMMENTS
For any term a(n), all numbers of the form a(n)*10^3k, k >= 0, are in this sequence. Primitive terms, i.e., not of this form (or equivalently: without trailing '0'), are 125, 512, 405224, 531441, 1225043, 5000211, 5545233, 13312053, 43243551, ...
FORMULA
a(n) = A294665(n)^3.
EXAMPLE
512 is in the sequence because it is a cube, 512 = 8^3, and its largest digit is 5.
PROG
(PARI) for(n=1, 2e8, vecmax(digits(n^3))==5&&print1(n^3, ", "))
(Python)
def ok(cube): return max(str(cube)) == "5"
print([c for c in (i**3 for i in range(1370)) if ok(c)]) # Michael S. Branicky, Dec 05 2021
CROSSREFS
Cf. A294665 (the corresponding cube roots), A278936 and A294663 (same for digit 3 and 4).
Cf. A000578 (the cubes).
Sequence in context: A061450 A067974 A034290 * A070308 A211176 A045170
KEYWORD
nonn,base
AUTHOR
M. F. Hasler, Nov 12 2017
STATUS
approved