%I #8 Dec 05 2021 10:31:31
%S 125,512,125000,405224,512000,531441,1225043,5000211,5545233,13312053,
%T 43243551,54010152,102503232,115501303,125000000,221445125,320013504,
%U 400315553,405224000,512000000,531441000,1204550144,1225043000,2053225511,2253243231,2543302125
%N Cubes whose largest digit is 5.
%C For any term a(n), all numbers of the form a(n)*10^3k, k >= 0, are in this sequence. Primitive terms, i.e., not of this form (or equivalently: without trailing '0'), are 125, 512, 405224, 531441, 1225043, 5000211, 5545233, 13312053, 43243551, ...
%F a(n) = A294665(n)^3.
%e 512 is in the sequence because it is a cube, 512 = 8^3, and its largest digit is 5.
%o (PARI) for(n=1,2e8, vecmax(digits(n^3))==5&&print1(n^3,","))
%o (Python)
%o def ok(cube): return max(str(cube)) == "5"
%o print([c for c in (i**3 for i in range(1370)) if ok(c)]) # _Michael S. Branicky_, Dec 05 2021
%Y Cf. A294665 (the corresponding cube roots), A278936 and A294663 (same for digit 3 and 4).
%Y Cf. A000578 (the cubes).
%K nonn,base
%O 1,1
%A _M. F. Hasler_, Nov 12 2017