login
A294663
Cubes whose largest digit is 4.
7
343, 314432, 343000, 34012224, 314432000, 343000000, 34012224000, 314432000000, 343000000000, 442102433032, 30304210142233, 34012224000000, 143121324002112, 314432000000000, 333014302331144, 343000000000000, 442102433032000, 30304210142233000, 34012224000000000
OFFSET
1,1
COMMENTS
For any term a(n), all numbers of the form a(n)*10^3k, k >= 0, are in this sequence. Primitive terms, i.e., not of this form (or equivalently: without trailing '0'), are 343, 314432, 34012224, 442102433032, 30304210142233, 143121324002112, 333014302331144, ...
FORMULA
a(n) = A294664(n)^3.
EXAMPLE
343 is in the sequence because it is a cube, 343 = 7^3, and its largest digit is 4.
PROG
(PARI) for(n=1, 2e8, vecmax(digits(n^3))==4&&print1(n^3, ", "))
CROSSREFS
Cf. A294664 (the corresponding cubic roots).
Cf. A277948 = A277961^2 (analog for squares).
Cf. A278936, A295025, A295021, ..., A295024 (analog for digits 3, 5, 6, ..., 9).
Cf. A000578 (the cubes).
Sequence in context: A117197 A269554 A046236 * A222460 A013787 A013844
KEYWORD
nonn,base
AUTHOR
M. F. Hasler, Nov 12 2017
STATUS
approved