Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 May 25 2018 04:24:18
%S 1,1,0,1,1,0,1,1,1,0,1,1,3,2,0,1,1,3,8,2,0,1,1,3,14,36,9,0,1,1,3,14,
%T 72,159,-6,0,1,1,3,14,96,489,932,118,0,1,1,3,14,96,729,3722,5627,-568,
%U 0,1,1,3,14,96,849,6842,33641,40016,4716,0
%N A(n,k) is (1/n) times the n-th derivative of the k-th tetration of x (power tower of order k) x^^k at x=1; square array A(n,k), n>=1, k>=1, read by antidiagonals.
%H Alois P. Heinz, <a href="/A295028/b295028.txt">Antidiagonals n = 1..141, flattened</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PowerTower.html">Power Tower</a>
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Knuth%27s_up-arrow_notation">Knuth's up-arrow notation</a>
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Tetration">Tetration</a>
%F A(n,k) = 1/n * [(d/dx)^n x^^k]_{x=1}.
%F A(n,k) = (n-1)! * [x^n] (x+1)^^k.
%F A(n,k) = Sum_{i=0..min(n,k)} A295027(n,i).
%F A(n,k) = 1/n * A277537(n,k).
%e Square array A(n,k) begins:
%e 1, 1, 1, 1, 1, 1, 1, 1, ...
%e 0, 1, 1, 1, 1, 1, 1, 1, ...
%e 0, 1, 3, 3, 3, 3, 3, 3, ...
%e 0, 2, 8, 14, 14, 14, 14, 14, ...
%e 0, 2, 36, 72, 96, 96, 96, 96, ...
%e 0, 9, 159, 489, 729, 849, 849, 849, ...
%e 0, -6, 932, 3722, 6842, 8642, 9362, 9362, ...
%e 0, 118, 5627, 33641, 71861, 102941, 118061, 123101, ...
%p f:= proc(n) f(n):= `if`(n=0, 1, (x+1)^f(n-1)) end:
%p A:= (n, k)-> (n-1)!*coeff(series(f(k), x, n+1), x, n):
%p seq(seq(A(n, 1+d-n), n=1..d), d=1..14);
%p # second Maple program:
%p b:= proc(n, k) option remember; `if`(n=0, 1, `if`(k=0, 0,
%p -add(binomial(n-1, j)*b(j, k)*add(binomial(n-j, i)*
%p (-1)^i*b(n-j-i, k-1)*(i-1)!, i=1..n-j), j=0..n-1)))
%p end:
%p A:= (n, k)-> b(n, min(k, n))/n:
%p seq(seq(A(n, 1+d-n), n=1..d), d=1..14);
%t b[n_, k_] := b[n, k] = If[n == 0, 1, If[k == 0, 0, -Sum[Binomial[n - 1, j]*b[j, k]*Sum[Binomial[n - j, i]*(-1)^i*b[n - j - i, k - 1]*(i - 1)!, {i, 1, n - j}], {j, 0, n - 1}]]];
%t A[n_, k_] := b[n, Min[k, n]]/n;
%t Table[A[n, 1 + d - n], {d, 1, 14}, {n, 1, d}] // Flatten (* _Jean-François Alcover_, May 25 2018, translated from 2nd Maple program *)
%Y Columns k=1-10 give: A063524, A005168, A295103, A295104, A295105, A295106, A295107, A295108, A295109, A295110.
%Y Main diagonal gives A136461(n-1).
%Y Cf. A277537, A295027.
%K sign,tabl
%O 1,13
%A _Alois P. Heinz_, Nov 12 2017