login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A136459
A triangle of coefficients from the transorthogonal ( or simplex code) matrix characteristic polynomial: h(i,j)=-1/(2^(i+j)-1);i,j<=n; m(i,j)=2^n^2)*Inverse(h(i,j))/6;.
0
1, -1, -1, 3920, 588, 1, -8100814848000, -39479417600, -2979480, -1, 1611539173017517109941370880000, 61936836322916982325248000, 39909735720699801600, 163294580720, 1, -6618882426924155530592746398747608414335176303936798720000
OFFSET
1,4
COMMENTS
The name contains an unmatched parenthesis. - Editors, Mar 13 2024
Row sums are:
{1, -2, 4509, -8140297245081, 1611601109893749762807690510321,
-6618882924928306991992730326130237124487220310559174099681}
REFERENCES
http://www.ee.cityu.edu.hk/~eekwwong/ee40214/chapter3.pdf [broken link]
FORMULA
h(i,j)=-1/(2^(i+j)-1);i,j<=n; m(i,j)=2^n^2)*Inverse(h(i,j))/6;
EXAMPLE
{1},
{-1, -1},
{3920, 588, 1},
{-8100814848000, -39479417600, -2979480, -1},
{1611539173017517109941370880000, 61936836322916982325248000,39909735720699801600, 163294580720, 1},
{-6618882426924155530592746398747608414335176303936798720000,-498004150819770968302750426840905467826794397696000, -641629015618830186439905263755182106214400,
-5802015429341199319726979481600,-113104918891987680, -1}
MATHEMATICA
M[w_] := Table[Table[ -1/(2^(n + m) - 1), {n, 1, w}], {m, 1, w}]; IM[w_] := Inverse[M[w]]; Join[{1}, Table[CharacteristicPolynomial[2^(n^2)*IM[n]/6, x], {n, 1, 5}]]; a = Join[{{1}}, Table[CoefficientList[CharacteristicPolynomial[2^(n^2)*IM[n]/6, x], x], {n, 1, 5}]]; Flatten[a] Join[{1}, Table[Apply[Plus, CoefficientList[CharacteristicPolynomial[2^(n^2)*IM[n]/6, x], x]], {n, 1, 5}]];
CROSSREFS
Sequence in context: A131409 A209732 A221239 * A235315 A229642 A266060
KEYWORD
uned,tabl,sign
AUTHOR
Roger L. Bagula, Mar 20 2008
STATUS
approved