login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A triangle of coefficients from the transorthogonal ( or simplex code) matrix characteristic polynomial: h(i,j)=-1/(2^(i+j)-1);i,j<=n; m(i,j)=2^n^2)*Inverse(h(i,j))/6;.
0

%I #6 Mar 13 2024 19:24:36

%S 1,-1,-1,3920,588,1,-8100814848000,-39479417600,-2979480,-1,

%T 1611539173017517109941370880000,61936836322916982325248000,

%U 39909735720699801600,163294580720,1,-6618882426924155530592746398747608414335176303936798720000

%N A triangle of coefficients from the transorthogonal ( or simplex code) matrix characteristic polynomial: h(i,j)=-1/(2^(i+j)-1);i,j<=n; m(i,j)=2^n^2)*Inverse(h(i,j))/6;.

%C The name contains an unmatched parenthesis. - Editors, Mar 13 2024

%C Row sums are:

%C {1, -2, 4509, -8140297245081, 1611601109893749762807690510321,

%C -6618882924928306991992730326130237124487220310559174099681}

%D http://www.ee.cityu.edu.hk/~eekwwong/ee40214/chapter3.pdf [broken link]

%F h(i,j)=-1/(2^(i+j)-1);i,j<=n; m(i,j)=2^n^2)*Inverse(h(i,j))/6;

%e {1},

%e {-1, -1},

%e {3920, 588, 1},

%e {-8100814848000, -39479417600, -2979480, -1},

%e {1611539173017517109941370880000, 61936836322916982325248000,39909735720699801600, 163294580720, 1},

%e {-6618882426924155530592746398747608414335176303936798720000,-498004150819770968302750426840905467826794397696000, -641629015618830186439905263755182106214400,

%e -5802015429341199319726979481600,-113104918891987680, -1}

%t M[w_] := Table[Table[ -1/(2^(n + m) - 1), {n, 1, w}], {m, 1, w}]; IM[w_] := Inverse[M[w]]; Join[{1}, Table[CharacteristicPolynomial[2^(n^2)*IM[n]/6, x], {n, 1, 5}]]; a = Join[{{1}}, Table[CoefficientList[CharacteristicPolynomial[2^(n^2)*IM[n]/6, x], x], {n, 1, 5}]]; Flatten[a] Join[{1}, Table[Apply[Plus, CoefficientList[CharacteristicPolynomial[2^(n^2)*IM[n]/6, x], x]], {n, 1, 5}]];

%K uned,tabl,sign

%O 1,4

%A _Roger L. Bagula_, Mar 20 2008