login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355635
Triangle read by rows. Row n gives the coefficients of Product_{k=0..n-1} (x - binomial(n-1,k)) expanded in decreasing powers of x, with row 0 = {1}.
0
1, 1, -1, 1, -2, 1, 1, -4, 5, -2, 1, -8, 22, -24, 9, 1, -16, 93, -238, 256, -96, 1, -32, 386, -2180, 5825, -6500, 2500, 1, -64, 1586, -19184, 117561, -345600, 407700, -162000, 1, -128, 6476, -164864, 2229206, -15585920, 51583084, -64538880, 26471025
OFFSET
0,5
COMMENTS
Without signs the triangle of elementary symmetric functions of the terms binomial(n,j), j=0..n.
FORMULA
T(n, 0) = 1.
T(n, 1) = -2^(n-1), for n > 0.
T(n, 2) = A000346(n-2), for n > 1.
T(n, 3) = -A025131(n-1), for n > 1.
T(n, 4) = A025133(n-1), for n > 1.
T(n, n) = (-1)^n*A001142(n-1), for n > 0.
T(n+1, n) = (-1)^n*A025134(n).
T(n+2, n) = (-1)^n*A025135(n).
EXAMPLE
The triangle begins:
1;
1, -1;
1, -2, 1;
1, -4, 5, -2;
1, -8, 22, -24, 9;
1, -16, 93, -238, 256, -96;
1, -32, 386, -2180, 5825, -6500, 2500;
...
Row 4: x^4 - 8*x^3 + 22*x^2 - 24*x + 9 = (x-1)*(x-4)*(x-6)*(x-4)*(x-1).
PROG
(PARI) T(n, k) = polcoeff(prod(m=0, n, (x-binomial(n-1, m))), n-k+1);
CROSSREFS
Cf. A001142 (right diagonal unsigned).
Sequence in context: A158471 A158472 A198895 * A118686 A355540 A102610
KEYWORD
sign,tabl
AUTHOR
Thomas Scheuerle, Jul 11 2022
STATUS
approved