login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355634
Irregular triangle T(n, k), n > 0, k = 1..A093640(n), read by rows; the n-th row contains in ascending order the divisors of n whose binary expansions appear as substrings in the binary expansion of n.
3
1, 1, 2, 1, 3, 1, 2, 4, 1, 5, 1, 2, 3, 6, 1, 7, 1, 2, 4, 8, 1, 9, 1, 2, 5, 10, 1, 11, 1, 2, 3, 4, 6, 12, 1, 13, 1, 2, 7, 14, 1, 3, 15, 1, 2, 4, 8, 16, 1, 17, 1, 2, 9, 18, 1, 19, 1, 2, 4, 5, 10, 20, 1, 21, 1, 2, 11, 22, 1, 23, 1, 2, 3, 4, 6, 8, 12, 24, 1, 25
OFFSET
1,3
FORMULA
T(n, 1) = 1.
T(n, A093640(n)) = n.
Sum_{k = 1..A093640(n)} T(n, k) = A355633(n).
EXAMPLE
Triangle T(n, k) begins:
1: [1]
2: [1, 2]
3: [1, 3]
4: [1, 2, 4]
5: [1, 5]
6: [1, 2, 3, 6]
7: [1, 7]
8: [1, 2, 4, 8]
9: [1, 9]
10: [1, 2, 5, 10]
11: [1, 11]
12: [1, 2, 3, 4, 6, 12]
13: [1, 13]
14: [1, 2, 7, 14]
15: [1, 3, 15]
16: [1, 2, 4, 8, 16]
MATHEMATICA
Table[Select[Divisors[n], StringContainsQ[IntegerString[n, 2], IntegerString[#, 2]] &], {n, 50}] (* Paolo Xausa, Jul 23 2024 *)
PROG
(PARI) row(n, base=2) = { my (d=digits(n, base), s=setbinop((i, j) -> fromdigits(d[i..j], base), [1..#d]), v=0); select(v -> v && n%v==0, s) }
(Python)
from sympy import divisors
def row(n):
s = bin(n)[2:]
return sorted(d for d in divisors(n, generator=True) if bin(d)[2:] in s)
def table(r): return [i for n in range(1, r+1) for i in row(n)]
print(table(25)) # Michael S. Branicky, Jul 11 2022
CROSSREFS
Cf. A027750, A093640 (row lengths), A355632 (decimal analog), A355633 (row sums).
Sequence in context: A275055 A254679 A343651 * A275280 A319845 A319847
KEYWORD
nonn,base,tabf
AUTHOR
Rémy Sigrist, Jul 11 2022
STATUS
approved