login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A025134
a(n) = n-th elementary symmetric function of C(n,0), C(n,1), ..., C(n,n).
3
1, 2, 5, 24, 256, 6500, 407700, 64538880, 26120421376, 27252226455552, 73710997920000000, 519006451497395400000, 9544405721673726148608000, 459675814976476432499714440320, 58118199039973755223479833897882880, 19330456644008414104033256172750000000000
OFFSET
0,2
LINKS
MAPLE
a:= n-> coeff(mul(binomial(n, i)*x+1, i=0..n), x, n):
seq(a(n), n=0..20); # Alois P. Heinz, Sep 08 2019
MATHEMATICA
ESym[u_] := Module[{v, t}, v = Table[0, {Length[u]+1}]; v[[1]] = 1; For[i = 1, i <= Length[u], i++, t = u[[i]]; For[j = i, j >= 1, j--, v[[j+1]] += v[[j]]*t]]; v];
a[n_] := ESym[Table[Binomial[n, k], {k, 0, n}]][[n+1]];
a /@ Range[0, 15] (* Jean-François Alcover, Sep 08 2019, from PARI *)
PROG
(PARI)
ESym(u)={my(v=vector(#u+1)); v[1]=1; for(i=1, #u, my(t=u[i]); forstep(j=i, 1, -1, v[j+1]+=v[j]*t)); v}
a(n)={ESym(binomial(n))[n+1]} \\ Andrew Howroyd, Dec 19 2018
CROSSREFS
Sequence in context: A052808 A137157 A359810 * A340772 A370066 A076534
KEYWORD
nonn
EXTENSIONS
Terms a(10) and beyond from Andrew Howroyd, Dec 19 2018
STATUS
approved