|
|
A025135
|
|
(n-1)st elementary symmetric function of binomial(n,0), binomial(n,1), ..., binomial(n,n).
|
|
1
|
|
|
1, 4, 22, 238, 5825, 345600, 51583084, 19765932032, 19661794008192, 51082239411000000, 347836712523276735000, 6221718604078720792473600, 292819054882445795002015111824, 36313083181879002042916296055971840, 11881691691176915544450299522846484375000
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
From R. J. Mathar, Oct 01 2016: (Start)
The k-th elementary symmetric functions of the terms binomial(n,j), j=0..n, form a triangle T(n,k), 0 <= k <= n, n >= 0:
1
1 2
1 4 5
1 8 22 24
1 16 93 238 256
1 32 386 2180 5825 6500
1 64 1586 19184 117561 345600 407700
1 128 6476 164864 2229206 15585920 51583084 64538880
...
This here is the first subdiagonal. The diagonal is A025134. The 2nd column is A000079, the 2nd A000346, the 3rd A025131, the 4th A025133. (End)
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 1..70
|
|
MATHEMATICA
|
a[n_] := SymmetricPolynomial[n-1, Table[Binomial[n, k], {k, 0, n}]]; a /@ Range[18] (* Jean-François Alcover, Jul 12 2011 *)
|
|
PROG
|
(PARI)
ESym(u)={my(v=vector(#u+1)); v[1]=1; for(i=1, #u, my(t=u[i]); forstep(j=i, 1, -1, v[j+1]+=v[j]*t)); v}
a(n)={ESym(binomial(n))[n]} \\ Andrew Howroyd, Dec 19 2018
|
|
CROSSREFS
|
Sequence in context: A260296 A302769 A137158 * A125801 A341459 A195227
Adjacent sequences: A025132 A025133 A025134 * A025136 A025137 A025138
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Clark Kimberling
|
|
STATUS
|
approved
|
|
|
|