login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A203227
(n-1)-st elementary symmetric function of (0!,...,(n-1)!)
6
1, 2, 5, 32, 780, 93888, 67633920, 340899840000, 13745206960128000, 4987865758275993600000, 18099969098565397826764800000, 722492853172221856076141690880000000, 346075232923849611911833538569175040000000000
OFFSET
1,2
COMMENTS
Each term appears as an unreduced numerator in the following partial infinite sum: f(0) = 1; f(n) = f(n-1)/n; Sum_{k>=0}(f(k)) = e. - Daniel Suteu, Jul 30 2016
a(n)/A000178(n-1) -> e as n -> oo. - Daniel Suteu, Jul 30 2016
LINKS
EXAMPLE
For n=4, the 3rd elementary symmetric polynomial in the 4 variables a, b, c, and d is abc + abd + acd + bcd. Setting a = 0! = 1, b = 1! = 1, c = 2! = 2, and d = 3! = 6 gives a(4) = 1*1*2 + 1*1*6 + 1*2*6 + 1*2*6 = 2 + 6 + 12 + 12 = 32. - Michael B. Porter, Aug 17 2016
MAPLE
a:= n-> coeff(mul(i!*x+1, i=0..n-1), x, n-1):
seq(a(n), n=1..15); # Alois P. Heinz, Sep 08 2019
MATHEMATICA
f[k_] := (k - 1)!; t[n_] := Table[f[k], {k, 1, n}]
a[n_] := SymmetricPolynomial[n - 1, t[n]]
Table[a[n], {n, 1, 14}]
Flatten[{1, Table[Det[Table[BellB[i+j], {i, n}, {j, n}]], {n, 1, 15}]}] (* Vaclav Kotesovec, Nov 28 2016 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Dec 30 2011
STATUS
approved