login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

(n-1)-st elementary symmetric function of (0!,...,(n-1)!)
6

%I #22 Sep 08 2019 12:52:55

%S 1,2,5,32,780,93888,67633920,340899840000,13745206960128000,

%T 4987865758275993600000,18099969098565397826764800000,

%U 722492853172221856076141690880000000,346075232923849611911833538569175040000000000

%N (n-1)-st elementary symmetric function of (0!,...,(n-1)!)

%C Each term appears as an unreduced numerator in the following partial infinite sum: f(0) = 1; f(n) = f(n-1)/n; Sum_{k>=0}(f(k)) = e. - _Daniel Suteu_, Jul 30 2016

%C a(n)/A000178(n-1) -> e as n -> oo. - _Daniel Suteu_, Jul 30 2016

%H Alois P. Heinz, <a href="/A203227/b203227.txt">Table of n, a(n) for n = 1..44</a>

%e For n=4, the 3rd elementary symmetric polynomial in the 4 variables a, b, c, and d is abc + abd + acd + bcd. Setting a = 0! = 1, b = 1! = 1, c = 2! = 2, and d = 3! = 6 gives a(4) = 1*1*2 + 1*1*6 + 1*2*6 + 1*2*6 = 2 + 6 + 12 + 12 = 32. - _Michael B. Porter_, Aug 17 2016

%p a:= n-> coeff(mul(i!*x+1, i=0..n-1), x, n-1):

%p seq(a(n), n=1..15); # _Alois P. Heinz_, Sep 08 2019

%t f[k_] := (k - 1)!; t[n_] := Table[f[k], {k, 1, n}]

%t a[n_] := SymmetricPolynomial[n - 1, t[n]]

%t Table[a[n], {n, 1, 14}]

%t Flatten[{1, Table[Det[Table[BellB[i+j], {i, n}, {j, n}]], {n, 1, 15}]}] (* _Vaclav Kotesovec_, Nov 28 2016 *)

%Y Cf. A203228, A000142, A000178.

%K nonn

%O 1,2

%A _Clark Kimberling_, Dec 30 2011