login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A203298
Second elementary symmetric function of the first n terms of (1,2,2,3,3,4,4,5,5...).
3
2, 8, 23, 47, 91, 151, 246, 366, 540, 750, 1037, 1373, 1813, 2317, 2956, 3676, 4566, 5556, 6755, 8075, 9647, 11363, 13378, 15562, 18096, 20826, 23961, 27321, 31145, 35225, 39832, 44728, 50218, 56032, 62511, 69351, 76931, 84911, 93710, 102950
OFFSET
2,1
FORMULA
Empirical g.f.: x^2*(2 + 4*x + 3*x^2 - 3*x^3 - x^4 + x^5) / ((1 - x)^5*(1 + x)^3). - Colin Barker, Aug 15 2014
Conjectures from Colin Barker, Jan 04 2018: (Start)
a(n) = (6*n^4 + 40*n^3 + 48*n^2 - 112*n) / 192 for n even.
a(n) = (6*n^4 + 40*n^3 + 36*n^2 - 136*n + 54) / 192 for n odd.
a(n) = 2*a(n-1) + 2*a(n-2) - 6*a(n-3) + 6*a(n-5) - 2*a(n-6) - 2*a(n-7) + a(n-8) for n>9.
(End)
MATHEMATICA
f[k_] := Floor[(k + 2)/2]; t[n_] := Table[f[k], {k, 1, n}]
a[n_] := SymmetricPolynomial[2, t[n]]
Table[a[n], {n, 2, 50}] (* A203298 *)
CROSSREFS
Sequence in context: A158466 A065694 A178129 * A161463 A190021 A014285
KEYWORD
nonn
AUTHOR
Clark Kimberling, Dec 31 2011
STATUS
approved