login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A203246
Second elementary symmetric function of the first n terms of (1,1,2,2,3,3,4,4,...).
5
1, 5, 13, 31, 58, 106, 170, 270, 395, 575, 791, 1085, 1428, 1876, 2388, 3036, 3765, 4665, 5665, 6875, 8206, 9790, 11518, 13546, 15743, 18291, 21035, 24185, 27560, 31400, 35496, 40120, 45033, 50541, 56373, 62871, 69730, 77330, 85330, 94150, 103411, 113575
OFFSET
2,2
COMMENTS
Second subdiagonal of A246117. - Peter Bala, Aug 15 2014
FORMULA
Conjectural o.g.f.: x^2*(1 + 3*x + x^2 + x^3)/((1 - x^2)^3*(1 - x)^2). - Peter Bala, Aug 15 2014
Conjectural closed form: 64*a(n) = 2*n^2 -16*n/3 -3 +16*n^3/3 +2*n^4 +(-1)^n *(3-2*n^2). - R. J. Mathar, Oct 01 2016
Both conjectures are true. See link. - Sela Fried, Dec 22 2024
MATHEMATICA
f[k_] := Floor[(k + 1)/2]; t[n_] := Table[f[k], {k, 1, n}]
a[n_] := SymmetricPolynomial[2, t[n]]
Table[a[n], {n, 2, 50}] (* A203246 *)
CROSSREFS
Cf. A203298, A203299, A246117, A212523 (odd bisection), A103220 (even bisection).
Sequence in context: A271997 A360312 A332368 * A106985 A238742 A023261
KEYWORD
nonn,easy,changed
AUTHOR
Clark Kimberling, Dec 31 2011
STATUS
approved