login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A212523
Number of (w,x,y,z) with all terms in {1,...,n} and w+x<y+z.
5
0, 0, 5, 31, 106, 270, 575, 1085, 1876, 3036, 4665, 6875, 9790, 13546, 18291, 24185, 31400, 40120, 50541, 62871, 77330, 94150, 113575, 135861, 161276, 190100, 222625, 259155, 300006, 345506, 395995, 451825, 513360, 580976, 655061
OFFSET
0,3
COMMENTS
For a guide to related sequences, see A211795.
If the initial 0 is omitted, the sequence {b(n): n>=0} = {0, 5, 31, 106, 270, 575, 1085, 1876, 3036, 4665, 6875, 9790, ...} is given by b(n) = n*(n+1)*(3*n^2+7*n+5)/6. - N. J. A. Sloane, Jul 25 2021
FORMULA
a(n) = 5a(n-1)-10a(n-2)+10a(n-3)-5a(n-4)+a(n-5).
a(n) = Sum_{i=0..n-1} A048395(i). - J. M. Bergot, Jun 08 2012
G.f.: -x^2*(x+5)*(1+x)/(x-1)^5 . - R. J. Mathar, Sep 23 2016
MATHEMATICA
t = Compile[{{n, _Integer}}, Module[{s = 0},
(Do[If[w + x < y + z, s = s + 1],
{w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]];
Map[t[#] &, Range[0, 40]] (* A212523 *)
LinearRecurrence[{5, -10, 10, -5, 1}, {0, 0, 5, 31, 106}, 60] (* Vincenzo Librandi, Jun 09 2012 *)
PROG
(Magma) I:=[0, 0, 5, 31, 106]; [n le 5 select I[n] else 5*Self(n-1)-10*Self(n-2) +10*Self(n-3)-5*Self(n-4)+Self(n-5): n in [1..60]]; // Vincenzo Librandi, Jun 09 2012
CROSSREFS
Cf. A211795.
Sequence in context: A024399 A183520 A099083 * A096944 A053699 A152122
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, May 21 2012
STATUS
approved