login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A238742
Number of partitions p of 2n+1 such that n - (number of parts of p) is a part of p.
3
0, 0, 1, 5, 13, 31, 59, 109, 180, 301, 461, 712, 1051, 1547, 2200, 3138, 4349, 6036, 8211, 11146, 14901, 19908, 26232, 34513, 44953, 58412, 75244, 96752, 123448, 157201, 198931, 251155
OFFSET
1,4
LINKS
EXAMPLE
a(4) counts these partitions of 9: 72, 711, 621, 531, 441.
MATHEMATICA
z = 30; g[n_] := IntegerPartitions[n]; m[p_, t_] := MemberQ[p, t];
Table[Count[g[2 n], p_ /; m[p, n - Length[p]]], {n, z}] (*A238607*)
Table[Count[g[2 n - 1], p_ /; m[p, n - Length[p]]], {n, z}] (*A238641*)
Table[Count[g[2 n + 1], p_ /; m[p, n - Length[p]]], {n, z}] (*A238742*)
p[n_, k_] := p[n, k] = If[k == 1 || n == k, 1, If[k > n, 0, p[n-1, k-1] + p[n-k, k]]]; q[n_, k_, e_] := q[n, k, e] = If[n-e < k-1 , 0, If[k == 1, If[n == e, 1, 0], p[n-e, k-1]]]; a[n_] := Sum[q[2*n+1, u, n-u], {u, n-1}]; Array[a, 100] (* Giovanni Resta, Mar 12 2014 *)
CROSSREFS
Sequence in context: A332368 A203246 A106985 * A023261 A165888 A021007
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Mar 04 2014
STATUS
approved