login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of partitions p of 2n+1 such that n - (number of parts of p) is a part of p.
3

%I #7 Mar 12 2014 10:25:40

%S 0,0,1,5,13,31,59,109,180,301,461,712,1051,1547,2200,3138,4349,6036,

%T 8211,11146,14901,19908,26232,34513,44953,58412,75244,96752,123448,

%U 157201,198931,251155

%N Number of partitions p of 2n+1 such that n - (number of parts of p) is a part of p.

%H Giovanni Resta, <a href="/A238742/b238742.txt">Table of n, a(n) for n = 1..1000</a>

%e a(4) counts these partitions of 9: 72, 711, 621, 531, 441.

%t z = 30; g[n_] := IntegerPartitions[n]; m[p_, t_] := MemberQ[p, t];

%t Table[Count[g[2 n], p_ /; m[p, n - Length[p]]], {n, z}] (*A238607*)

%t Table[Count[g[2 n - 1], p_ /; m[p, n - Length[p]]], {n, z}] (*A238641*)

%t Table[Count[g[2 n + 1], p_ /; m[p, n - Length[p]]], {n, z}] (*A238742*)

%t p[n_, k_] := p[n, k] = If[k == 1 || n == k, 1, If[k > n, 0, p[n-1, k-1] + p[n-k, k]]]; q[n_, k_, e_] := q[n, k, e] = If[n-e < k-1 , 0, If[k == 1, If[n == e, 1, 0], p[n-e, k-1]]]; a[n_] := Sum[q[2*n+1, u, n-u], {u, n-1}]; Array[a, 100] (* _Giovanni Resta_, Mar 12 2014 *)

%Y Cf. A238640, A238741.

%K nonn,easy

%O 1,4

%A _Clark Kimberling_, Mar 04 2014