The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A238745 a(1) = 1; for n > 1, if the first integer with the same prime signature as n is factorized into primorials as Product A002110(i)^e(i), then a(n) = Product prime(i)^e(i). 6
 1, 2, 2, 4, 2, 3, 2, 8, 4, 3, 2, 6, 2, 3, 3, 16, 2, 6, 2, 6, 3, 3, 2, 12, 4, 3, 8, 6, 2, 5, 2, 32, 3, 3, 3, 9, 2, 3, 3, 12, 2, 5, 2, 6, 6, 3, 2, 24, 4, 6, 3, 6, 2, 12, 3, 12, 3, 3, 2, 10, 2, 3, 6, 64, 3, 5, 2, 6, 3, 5, 2, 18, 2, 3, 6, 6, 3, 5, 2, 24, 16, 3, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Alternate definition: a(1) = 1; for n > 1, if row n of table A238744 is {k(1), k(2),...,k(A051903(n))}, then a(n) = Product {i = 1 to A051903(n)} prime(k(i)). Since the first integer of each prime signature (A025487) is always a product of primorials (A002110), there is always a value for a(n). Every positive integer appears in the sequence. a(m) = a(n) iff m and n have the same prime signature.  If the prime signatures of m and n are conjugate to each other when they are viewed as partitions, then a(n) = A181819(m) and a(m) = A181819(n). LINKS Antti Karttunen, Table of n, a(n) for n = 1..10000 FORMULA a(n) = A181819(A124859(n)). a(n) = A122111(A181819(n)). EXAMPLE The first integer with the same prime signature as 40 is 24 = 2^3*3. Since the factorization of 24 into primorials is 24 = 2^2*6 = A002110(1)^2*A002110(2), a(24) = a(40) = prime(1)^2*prime(2) = 2^2*3 = 12. MATHEMATICA f[n_] := Block[{k = 1, d, a}, While[n - Times @@ Prime@ Range[k + 1] >= 0, k++]; If[n == Product[Prime@ i, {i, k}], Prime@ k, d = Select[Reverse@ FoldList[#1 #2 &, Prime@ Range@ k], Divisible[n, #] &]; If[AllTrue[#, IntegerQ], Times @@ Map[(FactorInteger[#1][[-1, 1]])^#2 & @@ # &, Reverse@ Tally@ #], False] &@ Rest@ NestWhileList[Function[P, {#1/P, P}]@ SelectFirst[d, Function[k, Divisible[#1, k]]] & @@ # &, {n, 1}, First@ # > 1 &][[All, -1]]]]; Table[f@ Apply[Times, MapIndexed[Prime[First@ #2]^#1 &, Sort[FactorInteger[n][[All, -1]], Greater]]] - Boole[n == 1], {n, 83}] (* Michael De Vlieger, May 19 2017, Version 10.2 *) CROSSREFS Cf. A181815, A181819, A238744. Sequence in context: A332581 A328059 A123674 * A092607 A221861 A057939 Adjacent sequences:  A238742 A238743 A238744 * A238746 A238747 A238748 KEYWORD nonn AUTHOR Matthew Vandermast, Apr 28 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 15 23:32 EDT 2020. Contains 335774 sequences. (Running on oeis4.)