OFFSET
1,2
LINKS
Indranil Ghosh, Table of n, a(n) for n = 1..5000 (first 1000 terms from R. Zumkeller)
Eric Weisstein's World of Mathematics, Prime Factorization
Eric Weisstein's World of Mathematics, Primorial
FORMULA
From Antti Karttunen, Mar 06 2017: (Start)
a(a(n)) = A046523(n). [after Matthew Vandermast's May 19 2012 formula for the latter sequence]
(End)
a(n) = A108951(A181819(n)). [Primorial inflation of the prime shadow of n] - Antti Karttunen, Sep 15 2023
EXAMPLE
From Michael De Vlieger, Mar 06 2017: (Start)
a(2) = 2 since 2 = 2^1, thus primorial p_1# = 2.
a(4) = 6 since 4 = 2^2, thus primorial p_2# = 2*3 = 6.
a(6) = 4 because 6 is squarefree with omega(6)=2, thus 2^2 = 4.
a(8) = 30 since 8 = 2^3, thus primorial p_3# = 2*3*5 = 30.
a(10) = 4 since 10 is squarefree with omega(10)=2, thus 2^2 = 4.
a(12) = 12 since 12 = 2^1 * 3^2, thus primorials p_1# * p_2# = 2*6 = 12.
(End)
MAPLE
A124859 := proc(n)
local a, pf;
a := 1;
for pf in ifactors(n)[2] do
a := a*A002110(pf[2]) ;
end do:
a ;
end proc:
seq(A124859(n), n=1..80) ; # R. J. Mathar, Oct 06 2017
MATHEMATICA
Table[Which[n == 1, 1, SquareFreeQ@ n, 2^PrimeNu@ n, True, Times @@ Map[Times @@ Prime@ Range@ # &, #[[All, -1]]]] &@ FactorInteger@ n, {n, 86}] (* Michael De Vlieger, Mar 06 2017 *)
PROG
(PARI) a(n) = {my(f = factor(n)); for (k=1, #f~, f[k, 1] = prod(j=1, f[k, 2], prime(j)); f[k, 2] = 1; ); factorback(f); } \\ Michel Marcus, Nov 16 2015
(Scheme) (define (A124859 n) (cond ((= 1 n) 1) (else (* (A002110 (A067029 n)) (A124859 (A028234 n)))))) ;; Antti Karttunen, Mar 06 2017
(Python)
from sympy.ntheory.factor_ import core
from sympy import factorint, primorial, primefactors
from operator import mul
def omega(n): return 0 if n==1 else len(primefactors(n))
def a(n):
f=factorint(n)
return n if n<3 else 2**omega(n) if core(n) == n else reduce(mul, [primorial(f[i]) for i in f]) # Indranil Ghosh, May 13 2017
CROSSREFS
KEYWORD
nonn,mult
AUTHOR
Reinhard Zumkeller, Nov 10 2006
STATUS
approved