login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A124859
Multiplicative with p^e -> primorial(e), p prime and e > 0.
15
1, 2, 2, 6, 2, 4, 2, 30, 6, 4, 2, 12, 2, 4, 4, 210, 2, 12, 2, 12, 4, 4, 2, 60, 6, 4, 30, 12, 2, 8, 2, 2310, 4, 4, 4, 36, 2, 4, 4, 60, 2, 8, 2, 12, 12, 4, 2, 420, 6, 12, 4, 12, 2, 60, 4, 60, 4, 4, 2, 24, 2, 4, 12, 30030, 4, 8, 2, 12, 4, 8, 2, 180, 2, 4, 12, 12, 4, 8, 2, 420, 210, 4, 2, 24, 4, 4
OFFSET
1,2
LINKS
Indranil Ghosh, Table of n, a(n) for n = 1..5000 (first 1000 terms from R. Zumkeller)
Eric Weisstein's World of Mathematics, Prime Factorization
Eric Weisstein's World of Mathematics, Primorial
FORMULA
a(A000040(x)^n) = A002110(n); a(A002110(n)) = A000079(n);
a(A005117(n)) = 2^A001221(A005117(n)) = A072048(n);
A001221(a(n)) = A051903(n); A001222(a(n)) = A001222(n).
From Antti Karttunen, Mar 06 2017: (Start)
a(1) = 1, for n > 1, a(n) = A002110(A067029(n)) * a(A028234(n)).
a(n) = A278159(A156552(n)).
a(A278159(n)) = A278222(n).
a(a(n)) = A046523(n). [after Matthew Vandermast's May 19 2012 formula for the latter sequence]
A181819(a(n)) = A238745(n). [after Matthew Vandermast's formula for the latter sequence]
(End)
a(n) = A108951(A181819(n)). [Primorial inflation of the prime shadow of n] - Antti Karttunen, Sep 15 2023
EXAMPLE
From Michael De Vlieger, Mar 06 2017: (Start)
a(2) = 2 since 2 = 2^1, thus primorial p_1# = 2.
a(4) = 6 since 4 = 2^2, thus primorial p_2# = 2*3 = 6.
a(6) = 4 because 6 is squarefree with omega(6)=2, thus 2^2 = 4.
a(8) = 30 since 8 = 2^3, thus primorial p_3# = 2*3*5 = 30.
a(10) = 4 since 10 is squarefree with omega(10)=2, thus 2^2 = 4.
a(12) = 12 since 12 = 2^1 * 3^2, thus primorials p_1# * p_2# = 2*6 = 12.
(End)
MAPLE
A124859 := proc(n)
local a, pf;
a := 1;
for pf in ifactors(n)[2] do
a := a*A002110(pf[2]) ;
end do:
a ;
end proc:
seq(A124859(n), n=1..80) ; # R. J. Mathar, Oct 06 2017
MATHEMATICA
Table[Which[n == 1, 1, SquareFreeQ@ n, 2^PrimeNu@ n, True, Times @@ Map[Times @@ Prime@ Range@ # &, #[[All, -1]]]] &@ FactorInteger@ n, {n, 86}] (* Michael De Vlieger, Mar 06 2017 *)
PROG
(PARI) a(n) = {my(f = factor(n)); for (k=1, #f~, f[k, 1] = prod(j=1, f[k, 2], prime(j)); f[k, 2] = 1; ); factorback(f); } \\ Michel Marcus, Nov 16 2015
(Scheme) (define (A124859 n) (cond ((= 1 n) 1) (else (* (A002110 (A067029 n)) (A124859 (A028234 n)))))) ;; Antti Karttunen, Mar 06 2017
(Python)
from sympy.ntheory.factor_ import core
from sympy import factorint, primorial, primefactors
from operator import mul
def omega(n): return 0 if n==1 else len(primefactors(n))
def a(n):
f=factorint(n)
return n if n<3 else 2**omega(n) if core(n) == n else reduce(mul, [primorial(f[i]) for i in f]) # Indranil Ghosh, May 13 2017
KEYWORD
nonn,mult
AUTHOR
Reinhard Zumkeller, Nov 10 2006
STATUS
approved