Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #29 Sep 01 2023 02:24:13
%S 1,1,6,1008,20321280,203199794380800,4096245678214226116608000,
%T 671169825411994707343327912777482240000,
%U 3589459026274030507466469204160461571257625328222208000000,2511229721141086754031154605327661795863172723306019839389105937236728217600000000
%N Vandermonde determinant of the first n terms of (1,2,4,8,16,...).
%C Each term divides its successor, as in A002884. Indeed, 2*v(n+1)/v(n) divides v(n+2)/v(n+1), as in A171499.
%H Robert Israel, <a href="/A203303/b203303.txt">Table of n, a(n) for n = 1..22</a>
%H Daniel M. Kane, Carlo Sanna, and Jeffrey Shallit, <a href="https://arxiv.org/abs/1801.04483">Waring's theorem for binary powers</a>, arXiv:1801.04483 [math.NT], Jan 13 2018.
%F From _Robert Israel_, Jan 16 2018: (Start)
%F a(n) = Product_{0 <= i < j <= n-1} (2^j - 2^i).
%F a(n) = 2^(n*(n-1)*(n-2)/6) * Product_{1<=k<=n-1} (2^k-1)^(n-k). (End)
%F a(n) ~ 1/A335011 * 2^(n*(n-1)*(2*n-1)/6) * QPochhammer(1/2)^n. - _Vaclav Kotesovec_, May 19 2020
%F a(n) = Product_{k=0..n-2} ( 2^(k+1)^2 * QPochhammer(2^(-k-1); 2; k+1) ). - _G. C. Greubel_, Aug 31 2023
%p # First program
%p with(LinearAlgebra):
%p a:= n-> Determinant(VandermondeMatrix([2^i$i=0..n-1])):
%p seq(a(n), n=1..12); # _Alois P. Heinz_, Jul 23 2017
%p # Second program
%p f:= n -> 2^(n*(n-1)*(n-2)/6)*mul((2^k-1)^(n-k),k=1..n-1):
%p seq(f(n),n=1..12); # _Robert Israel_, Jan 16 2018
%t (* First program *)
%t f[j_]:= 2^(j-1); z = 15;
%t v[n_]:= Product[Product[f[k] - f[j], {j,k-1}], {k,2,n}]
%t Table[v[n], {n,z}] (* A203303 *)
%t Table[v[n+1]/v[n], {n,z}] (* A002884 *)
%t Table[v[n]*v[n+2]/(2*v[n+1]^2), {n,z}] (* A171499 *)
%t Table[FactorInteger[v[n]], {n,z}]
%t (* Second program *)
%t Table[Product[2^(k+1) -2^j, {k,0,n-2}, {j,0,k}], {n,15}] (* _G. C. Greubel_, Aug 31 2023 *)
%o (Magma) [1] cat [(&*[(&*[2^(k+1) -2^j: j in [0..k]]): k in [0..n-2]]): n in [2..15]]; // _G. C. Greubel_, Aug 31 2023
%o (SageMath) [product(product(2^(k+1) -2^j for j in range(k+1)) for k in range(n-1)) for n in range(1,16)] # _G. C. Greubel_, Aug 31 2023
%Y Cf. A000079, A002884, A171499.
%K nonn
%O 1,3
%A _Clark Kimberling_, Jan 01 2012