OFFSET
0,1
COMMENTS
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..500
Index entries for linear recurrences with constant coefficients, signature (6,-8).
FORMULA
a(n) = 8*4^n - 2*2^n.
G.f.: 2*(3-4*x)/((1-2*x)*(1-4*x)).
a(n+1) - a(n) = A010036(n+2).
a(n) = 4*a(n-1)+2^(n+1) (with a(0)=6). - Vincenzo Librandi, Dec 04 2010
E.g.f.: 2*exp(2*x)*(2*exp(2*x) - 1)*(2*exp(2*x) + 1). - Stefano Spezia, Dec 10 2021
MATHEMATICA
LinearRecurrence[{6, -8}, {6, 28}, 30] (* Harvey P. Dale, Dec 21 2014 *)
PROG
(PARI) {m=22; v=concat([6, 28], vector(m-2)); for(n=3, m, v[n]=6*v[n-1]-8*v[n-2]); v}
(Magma) [8*4^n-2*2^n: n in [0..30]]; // Vincenzo Librandi, Jul 18 2011
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Klaus Brockhaus, Dec 10 2009
STATUS
approved